
IContents

I

© 2024 Devart

Table of Contents
Part I Overview 1

Part II What's new 2

Part III Installation 3

... 31 Windows

... 32 Linux

... 43 macOS

Part IV Activation 4

... 41 Activate a license

... 52 View the license details

... 53 Deactivate a license

Part V Using the module 6

Part VI Connection parameters 7

Part VII Connection pooling 9

Part VIII Data types 11

Part IX Class reference 12

... 121 Module class

... 232 Connection class

... 263 Cursor class

... 354 Connection pool class

Part X Support 38

Part XI Licensing 39

Part XII Uninstall the connector 43

Index 0

Python Connector for Salesforce1

© 2024 Devart

1 Overview

Overview
Python Connector for Salesforce is a connectivity solution for accessing Salesforce from

Python applications to read and update data. It fully implements the Python DB API 2.0

specification. The connector is distributed as a wheel package for Windows, macOS, and

Linux.

Standard SQL syntax

The connector fully supports the ANSI SQL standard and lets you execute SQL statements

against your Salesforce data just like you would normally work with relational databases.

Simple queries are directly converted to Salesforce API calls and executed on the Salesforce

side.

Complex queries are transformed into simpler queries, which are then converted to

Salesforce API calls. The embedded SQL engine then processes the results in the local

cache and applies advanced SQL features from the original complex query.

Compatibility
Python versions from 3.7 to 3.12

SQLAlchemy

pandas

petl

Overview 2

© 2024 Devart

Supported platforms
Windows 32-bit and 64-bit

Windows Server 32-bit and 64-bit

macOS 64-bit and ARM (Apple M1 and M2)

Linux 64-bit

Note: For details on supported OS versions, check the compatibility page of your Python

version.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

2 What's new

Python Connector for Salesforce 1.2
Added support for Python 3.13

Python Connector for Salesforce 1.1
Added metadata caching

Added connection pooling

Added activation with a license key

Added the subscription license type

Python Connector for Salesforce 1.0
Initial release of Python Connector for Salesforce

Added support for Windows 32-bit and 64-bit

Added support for Windows Server 32-bit and 64-bit

Added support for macOS 64-bit and ARM (Apple M1 and M2)

Added support for Linux 64-bit

© 2022-2024
Devart. All Rights

Request Support
Python Connectors
Forum

Provide Feedback

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html
https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Python Connector for Salesforce3

© 2024 Devart

Reserved.

3 Installation

3.1 Windows

Install the connector on Windows
1. Download the zip archive.

2. Extract the contents of the archive.

3. Open Command Prompt.

4. Verify that you have the pip package installer on your system using the py -m pip --

version command. If you don't have it, run the following command to install pip.

python -m ensurepip --upgrade

5. In Command Prompt, navigate to the directory that contains the extracted wheel packages.

6. Install the package:

Windows 32-bit

pip install devart_salesforce_connector-1.0.1-cp312-cp312-win32.whl

Windows 64-bit

pip install devart_salesforce_connector-1.0.1-cp312-cp312-win_amd64.whl

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

3.2 Linux

Install the connector on Linux
1. Download the zip archive.

2. Extract the contents of the archive.

3. Open a terminal window.

4. Verify that you have the pip package installer on your system using the py -m pip --

version command. If you don't have it, run the following command to install pip.

https://www.devart.com/python/salesforce/download.html
https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html
https://www.devart.com/python/salesforce/download.html

Installation 4

© 2024 Devart

python -m ensurepip --upgrade

5. In terminal, navigate to the directory that contains the extracted wheel package.

6. Install the package.

pip install devart_salesforce_connector-1.0.1-cp312-cp312-manylinux_2_34_x86_64.whl

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

3.3 macOS

Install the connector on macOS
1. Download the zip archive.

2. Extract the contents of the archive.

3. Open a terminal window.

4. Verify that you have the pip package installer on your system using the py -m pip --

version command. If you don't have it, run the following command to install pip.

python -m ensurepip --upgrade

5. In terminal, navigate to the directory that contains the extracted wheel package.

6. Install the package.

pip install devart_salesforce_connector-1.0.1-cp312-cp312-macosx_10_9_universal2.whl

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

4 Activation

4.1 Activate a license

Activate a license
1. Obtain an activation key using either of the following methods:

Copy the activation key that you received in an order confirmation email.

Obtain the activation key on the customer portal:

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html
https://www.devart.com/python/salesforce/download.html
https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Python Connector for Salesforce5

© 2024 Devart

1. Log in to the customer portal using the login credentials from an order confirmation

email.

2. Click the name of the purchased product on the Products page to view the license

details.

3. Click Copy to clipboard under Activation key.

2. Start the Python shell.

3. Import the module.

import devart.salesforce

4. Specify the activation key using the activate() module method.

devart.salesforce.license.activate("<your_activation_key>")

5. (Optional) View the license details.

print(devart.salesforce.license.summary)

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

4.2 View the license details

View the license details
1. Start the Python shell.

2. Import the devart.salesforce module.

import devart.salesforce

3. Print the value of the summary module attribute.

print(devart.salesforce.license.summary)

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

4.3 Deactivate a license

Deactivate a license

https://secure.devart.com/
https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html
https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Activation 6

© 2024 Devart

1. Start the Python shell.

2. Import the devart.salesforce module.

import devart.salesforce

3. Deactivate your license using the deactivate module method.

devart.salesforce.license.deactivate()

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

5 Using the module

Using the module
To retrieve data from a database:

1. Import the module.

import devart.salesforce

2. Connect to a database using the connect() module method and obtain a connection

object:

If you're using basic authentication:

my_connection = devart.salesforce.connect(

 Authentication="Basic",

 Host="your_org_url",

 UserId="your_username",

 UserPassword="your_password",

 SecurityToken="your_token"

)

If you're using OAuth 2.0 authentication and have a refresh token:

my_connection = devart.salesforce.connect(

 Authentication="OAuth",

 Host="your_org_url",

 RefreshToken="your_refresh_token"

)

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Python Connector for Salesforce7

© 2024 Devart

If you're using OAuth 2.0 authentication and don't have a refresh token:

response = devart.salesforce.signin(Host="your_org_url")

my_connection = devart.salesforce.connect(

 Authentication="OAuth",

 Host="your_org_url",

 RefreshToken=response["Refresh Token"]

)

3. Create a cursor object using the cursor() connection method.

my_cursor = my_connection.cursor()

4. Execute the SQL statement using the execute() cursor method.

my_cursor.execute("SELECT * FROM employees")

5. Retrieve the result set using one of the fetch*() cursor methods.

for row in my_cursor.fetchall():

 print(row)

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

6 Connection parameters

Connection parameters
The following table describes the Salesforce connection parameters you can use in the

connect() module method.

Paramet
er

Description

Authentic

ation

The authentication type. The possible values are:

Basic – (Default) Basic authentication

OAuth – OAuth 2.0 authentication

Host The base URL of the Salesforce organization.

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Connection parameters 8

© 2024 Devart

The default URL for for production and Developer Edition organizations is

login.salesforce.com. The default URL for sandboxes is

test.salesforce.com.

Basic authentication

UserId The user's name

Password The user's password

SecurityT

oken
The security token

OAuth 2.0 authentication

RefreshTo

ken

The refresh token.

If you have a refresh token, pass it to this parameter. Otherwise, follow the

instructions in Using the module to obtain a refresh token.

Proxy parameters

ProxyHost

Name
The hostname or IP address of the proxy server

ProxyPort The proxy port

ProxyUser

Name
The username for proxy authentication

ProxyPass

word
The password for proxy authentication

Other parameters

PoolId The ID of a connection pool that will be used for a particular connection

DisablePo

oling

Disables connection pooling for a particular connection.

The possible values are True and False. The default value is False.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Python Connector for Salesforce9

© 2024 Devart

7 Connection pooling

Connection pooling
Connecting to a database server typically consists of several time-consuming steps.

Connection pooling can significantly improve the performance and scalability of an application

by reducing the number of times that new database connections must be opened. This is

particularly useful for applications that involve many connect/disconnect operations.

Connection pooling uses a cache of database connections, which enables an application to

reuse a connection from a pool instead of opening a new connection when future requests to

the database are required.

When you close a connection object using the close() method, the connection remains alive

and is added to a pool. When a new connection object is created with the connect() method,

the module returns an existing connection from the pool if the connection pooler hasn't

detected the severed connection and marked it as invalid. A new connection will be

established if the pool is empty or doesn't have a valid connection.

To enable connection pooling, set the value of the connection_pool.enabled module

attribute to True. Additional options include connection_pool.min_size,

connection_pool.max_size, connection_pool.lifetime, and

connection_pool.validate. For more information about these attributes, see the

connection pool class.

The following example sets the attributes for the default connection pool, which implicitly has

the ID 0.

devart.salesforce.connection_pool.min_size = 0
devart.salesforce.connection_pool.max_size = 1000
devart.salesforce.connection_pool.lifetime = 60000
devart.salesforce.connection_pool.validate = True
devart.salesforce.connection_pool.enabled = True

You can define several connection pools with different settings. To define settings for a

connection pool with a particular ID, use the syntax connection_pool[pool_id: int],

where pool_id is the ID of the pool. You can also pass the PoolId connection string

parameter to specify which connection pool will be used for a particular connection.

devart.salesforce.connection_pool[42].max_size = 100
devart.salesforce.connection_pool[42].lifetime = 120000
devart.salesforce.connection_pool.enabled = True

Connection pooling 10

© 2024 Devart

my_connection = devart.salesforce.connect("Authentication=OAuth;Host=your_org_url;RefreshToken=your_refresh_token",PoolId=42)

Database connections belong to the same pool when they have identical parameters in the

connection string. Two connections with different connection string parameters will be placed

into separate pools with the same identifiers. The connector creates a separate pool when a

new connection has the same pool ID as an existing pool but different connection

parameters.

The connection_pool.enabled attribute is global. If pooling is enabled, all new connections

will be pooled. Pooling can be disabled for a particular connection using the DisablePooling

connection string parameter.

my_connection = devart.salesforce.connect("Authentication=OAuth;Host=your_org_url;RefreshToken=your_refresh_token",DisablePooling=True)

Database connections in a pool are validated every 30 seconds to ensure that a broken

connection won't be returned from the pool when a connection object is constructed. Invalid

connections are destroyed. The connection pooler also validates connections when they are

added or released back into the pool (for example, when you call the connection.close()

method).

If you set the validate attribute to True, connections will also be validated when they're

drawn from the pool. In the event of a network issue, all connections to a database may

become broken. Therefore, if a fatal error is detected in one connection from the pool, the

pooler will validate all connections in the pool.

The pooler removes a connection from the pool after it's been idle for approximately 4

minutes. If no new connections are added to the pool during this time, it becomes empty to

save the resources. If you set the min_size attribute to a non-zero value, the pool won't

destroy all idle connections and become empty unless the remaining connections are marked

as invalid.

The max_size pool attribute limits the number of connections that can be stored in a pool at

the same time. When the maximum number of connections in a pool is reached, all future

database connections will be destroyed once the connection object releases them.

You can limit the connection lifetime using the lifetime attribute. When a connection object

is closed, and a database connection is returned to the pool, the creation time of the

connection is compared with the current time, and the connection is destroyed if that

timespan exceeds the lifetime value. This technique serves for load balancing.

© 2022-2024 Request Support Python Connectors Provide Feedback

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Python Connector for Salesforce11

© 2024 Devart

Devart. All Rights
Reserved.

Forum

8 Data types

Data types
The following table describes the supported Salesforce data types and their mapping to the

Python data types. The type codes returned in the description cursor attribute can be used

in the addtypecast() cursor method.

Salesforce data type Type code Python data type

BINARY 3002 binary

CHECKBOX 3004 bool

BOOLEAN 3004 bool

DATE 3006 datetime.date

DATETIME 3007 datetime.datetime

TIME 3018 datetime.time

CURRENCY 3005 float

NUMBER 3009 float

PERCENT 3009 float

DOUBLE 3009 float

INT 3012 int

LONG 3021 int

ANYTYPE 3017 str

AUTONUMBER 3017 str

COMBOBOX 3017 str

EMAIL 3017 str

HTML 3017 str

ID 3017 str

LONGTEXTAREA 3017 str

https://support.devart.com/portal/en/community/

Data types 12

© 2024 Devart

MULTISELECTPICKLIST 3017 str

PHONE 3017 str

PICKLIST 3017 str

REFERENCE 3017 str

TEXT 3017 str

TEXTAREA 3017 str

URL 3017 str

STRING 3017 str

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

9 Class reference

9.1 Module class

Module class
The module class provides methods, global properties, exceptions, constructors, and type

objects to be used by all connections created in the module.

Methods

signin()

connect()

activate()

deactivate()

Globals

apilevel

threadsafety

paramstyle

connection_pool

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Python Connector for Salesforce13

© 2024 Devart

summary

Exceptions

Warning

Error

InterfaceError

DatabaseError

DataError

OperationalError

IntegrityError

InternalError

ProgrammingError

NotSupportedError

Constructors

Date()

Time()

Timestamp()

DateFromTicks()

TimeFromTicks()

TimestampFromTicks()

Binary()

Type objects

STRING

BINARY

NUMBER

DATETIME

ROWID

binary

Class reference 14

© 2024 Devart

Methods

signin()

Authenticates your application to Salesforce using OAuth 2.0.

Arguments

Host

The base URL of your Salesforce organization. The default URLs are
login.salesforce.com for production and Developer Edition organizations and
test.salesforce.com for sandboxes.

Return value

Returns a dictionary with OAuth2 credentials that can be used in the connect method.

Code sample

response = devart.salesforce.signin(Host="your_org_url")
refresh_token=response["Refresh Token"]

connect(connection string|connection parameters)

Creates a new connection to the database.

Arguments

connection string

A string literal of form "parameter=value;parameter=value"

connection parameters

A sequence of named parameters

Connection parameters

For the full list of supported connection parameters, see Connection parameters.

Return value

Returns a connection object.

Python Connector for Salesforce15

© 2024 Devart

Code sample

establising a connection using a connection string
connection1 = devart.salesforce.connect("Authentication=OAuth;Host=your_org_url;RefreshToken=your_refresh_token")
establising a connection using named parameters
connection2 = devart.salesforce.connect(
 Authentication="OAuth",
 Host="your_org_url",
 RefreshToken="your_refresh_token"
)

license.activate(activation key)

Activates a license.

Arguments

activation key

A string literal that contains the activation key.

Remarks

See Activate a license for activation instructions.

license.deactivate()

Deactivates a license.

Arguments

This method has no arguments.

Remarks

See Deactivate a license for deactivation instructions.

Globals

apilevel

The DB API level supported by the module. Returns a string value "2.0".

Class reference 16

© 2024 Devart

threadsafety

The thread safety level of the module. Returns an integer value 2 meaning threads may
share the module and connections.

paramstyle

The type of parameter marker formatting expected by the module. Returns a string value
"named" indicating that the module supports named style parameters, such as
...WHERE name=:name.

connection_pool

Returns the connection pooling configuration.

license.summary

Returns the license details.

Exceptions
The module provides the following exceptions to make all error information available.

Warning

This exception is raised for important warnings like data truncations while inserting, etc.
The Warning exception is a subclass of the Python Exception class.

Error

This exception is the base class of all error exceptions. You can use it to catch all errors
with a single except statement. The Error exception is a subclass of the Python
Exception class.

InterfaceError

This exception is raised for errors that are related to the database interface rather than the
database itself. The InterfaceError exception is a subclass of Error.

DatabaseError

This exception is raised for errors that are related to the database. The DatabaseError
exception is a subclass of Error.

DataError

This exception is raised for errors caused by issues with the processed data like division
by zero, numeric value out of range, etc. The DataError exception is a subclass of
DatabaseError.

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

Python Connector for Salesforce17

© 2024 Devart

OperationalError

This exception is raised for errors that are related to the database operation and not
necessarily under the control of the developer, for example, an unexpected disconnect
occurs, the data source name isn't found, a transaction couldn't be processed, a
memory allocation error occurred during processing, etc. The OperationalError
exception is a subclass of DatabaseError.

IntegrityError

This exception raised when the relational integrity of the database is affected, for example,
a foreign key check fails. The IntegrityError exception is a subclass of
DatabaseError.

InternalError

This exception is raised when the database encounters an internal error, for example, the
cursor isn't valid anymore, the transaction is out of sync, etc. The InternalError
exception is a subclass of DatabaseError.

ProgrammingError

This exception is raised for programming errors, for example, table not found or already
exists, syntax error in the SQL statement, wrong number of parameters specified, etc.
The ProgrammingError exception is a subclass of DatabaseError.

NotSupportedError

This exception is raised when a method or database API isn't supported by the database,
for example, requesting a rollback() on a connection that doesn't support
transactions or has transactions turned off. The NotSupportedError exception is a
subclass of DatabaseError.

The complete exception inheritance tree:
Exception

Warning

Error

InterfaceError

DatabaseError

DataError

https://docs.python.org/3/library/exceptions.html#Exception

Class reference 18

© 2024 Devart

OperationalError

IntegrityError

InternalError

ProgrammingError

NotSupportedError

Constructors
The module provides the following constructors for creating date/time objects. The created
date/time objects are implemented as Python datetime module objects.

Date(year, month, day)

Creates an object that holds a date value.

Arguments

year

month

day

Values of type int that specify the year, month, and day.

Return value

Returns a datetime.date object.

Time(hour, minute, second[, timezone])

Creates an object that holds a time value.

Arguments

http://docs.python.org/library/datetime.html

Python Connector for Salesforce19

© 2024 Devart

hour

minute

Values of type int that specify hours and minutes.

second

An int value that specifies seconds or a float value that specifies seconds and
microseconds.

timezone

(Optional) A value of type datetime.tzinfo that specifies a timezone. The value can be
None.

Return value

Returns a datetime.time object.

Timestamp(year, month, day[, hour[, minute[, second[,
timezone]]]])

Creates an object that holds a timestamp value.

Arguments

year

month

day

Values of type int that specify the year, month, and day.

hour

minute

(Optional) Values of type int that specify hours and minutes.

second

(Optional) An int value that specifies seconds or a float value that specifies seconds

Class reference 20

© 2024 Devart

and microseconds.

timezone

(Optional) A value of type datetime.tzinfo that specifies a timezone. The value can be
None.

Return value

Returns a datetime.datetime object.

DateFromTicks(ticks)

Creates an object that holds a date value from the given ticks value (the number of seconds

since the Unix epoch). For more information, see the time module in the standard Python

documentation.

Arguments

ticks

A value of type float that specifies number of seconds since the Unix epoch.

Return value

Returns a datetime.date object.

TimeFromTicks(ticks)

Creates an object that holds a time value from the given ticks value (number of seconds

since the Unix epoch). For more information, see the time module in the standard Python

documentation.

Arguments

ticks

A value of type float that specifies number of seconds since the Unix epoch.

Return value

Returns a datetime.time object.

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html

Python Connector for Salesforce21

© 2024 Devart

TimestampFromTicks(ticks)

Creates an object that holds a timestamp value from the given ticks value (number of

seconds since the Unix epoch). For more information, see the time module in the standard

Python documentation.

Arguments

ticks

A value of type float that specifies number of seconds since the Unix epoch.

Return value

Returns a datetime.datetime object.

The module provides the following additional constructors.

Binary(value)

Creates an object that holds binary data.

Arguments

value

A value of type str, bytes, bytearray, array.array, or a binary object.

Return value

Returns a binary object.

Type objects
The module provides the following type objects to create mapping between the Salesforce
database types and Python types. You can use these type objects as arguments for the
addtypecast() cursor method to define a data type cast rule to use when fetching data from
the cursor. They can also be used to determine the Python types of the result columns
returned by the execute*() cursor methods.

STRING

https://docs.python.org/3/library/time.html

Class reference 22

© 2024 Devart

This type object describes string-based columns in a database.

BINARY

This type object describes binary columns in a database.

NUMBER

This type object describes numeric columns in a database.

DATETIME

This type object describes date/time columns in a database.

ROWID

This type object describes the row ID column in a database.

Code sample

cursor.execute("select column1 from table1")
check if the first column in the result set is string-based so that its value can be safely treated as `str`
if cursor.description[0].type_code in salesforce.STRING:
 # do something

The module provides the following additional type objects.

binary

This type object describes an object that holds binary data. By default, this type object is used

to fetch BLOB-based columns from the cursor. You can also create a binary object using

the Binary() constructor.

Attributes

value

A value of type bytes that represents binary data. This is a read/write attribute that
accepts values of type str, bytes, bytearray, array.array, and binary.

Python Connector for Salesforce23

© 2024 Devart

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

9.2 Connection class

Connection class
The connection class encapsulates a database session. It provides methods for creating

cursors, type casting, and transaction handling. Connections are created using the

connect() module method.

Methods

cursor()

commit()

rollback()

addtypecast()

cleartypecast()

close()

Attributes

connectstring

Exceptions

Methods

cursor()

Creates a new cursor object, which is used to manage the context of fetch operations.

Arguments

This method has no arguments.

Return value

Returns a cursor object.

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Class reference 24

© 2024 Devart

commit()

Commits any pending transaction to the database.

Arguments

This method has no arguments.

rollback()

Causes the database to roll back any pending transaction.

Arguments

This method has no arguments.

Remarks

Closing a connection without first committing changes causes an implicit rollback.

addtypecast(database type|module type object|column name|
description|dictionary[, Python type])

Defines a data type cast rule to use when fetching data from the cursor.

Arguments

database type

An int value that specifies the database data type code. You can also pass multiple data
type codes in a tuple or list.

module type object

A module type object that specifies the family of the database data types.

column name

A string literal that specifies the name of the database column. You can also pass multiple
string literals in a tuple or list.

description

A description object that describes the column in a rowset. You can also pass multiple
objects in a tuple or list.

Python Connector for Salesforce25

© 2024 Devart

dictionary

A dictionary of pairs column name:Python type that specifies individual cast rules for
a set of columns. The method argument Python type can be omitted.

Python type

A Python type object that specifies the target type to which to cast the database type, or
an int value which means that the column will be of type str and defines its maximum
length.

Code sample

connection = devart.salesforce.connect("Authentication=OAuth;Host=your_org_url;RefreshToken=your_refresh_token")
all database columns with data type code 3012 (Salesforce database type INT) will be casted to the Python type `int`
connection.addtypecast(3012, int)
all numeric database columns will be fetched as strings
connection.addtypecast(devart.salesforce.NUMBER, str)
data of "column1" will be fetched as a string
connection.addtypecast("column1", str)
data of "column2" will be fetched as `int` and data of "column3" will be fetched as a string of maximum length 50
connection.addtypecast({"column2":int, "column3":50})

Remarks

The cast rule affects all cursors created within the connection. To define a cast rule for a
particular cursor, use the addtypecast() cursor method. The type code of a database
column can be obtained from the type_code attribute of the corresponding element of
the description cursor attribute.

cleartypecast()

Removes all data type cast rules defined for the connection.

Arguments

This method has no arguments.

Remarks

This method doesn't remove cast rules defined for a particular cursor using the
addtypecast() cursor method.

close()

Closes the connection.

Class reference 26

© 2024 Devart

Arguments

This method has no arguments.

Remarks

The connection becomes unusable after calling this method. The InterfaceError
exception is raised if any operation is attempted with the connection. The same applies
to all cursor objects trying to use the connection. Closing a connection prior to
committing changes causes an implicit rollback.

Attributes

connectstring

A read-only attribute that returns a string literal of the form
"parameter=value;parameter=value" that contains the parameters for the current
connection.

Exceptions
The connection class provides a set of exception classes that exactly match the module

exceptions. This simplifies error handling in environments with multiple connections.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

9.3 Cursor class

Cursor class
The cursor class represents a database cursor, which is used to manage the context of

fetch operations. This class provides methods for executing SQL statements and operating

rowsets. Cursors are created using the cursor() connection method.

Methods

setinputsizes()

execute()

executemany()

fetchone()

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Python Connector for Salesforce27

© 2024 Devart

fetchmany()

fetchall()

next()

scroll()

addtypecast()

cleartypecast()

close()

setoutputsize()

Attributes

connection

arraysize

rowtype

description

rowcount

rownumber

lastrowid

Methods

setinputsizes([sizes])

Predefines the types of parameters for the further call to the execute*() method.

Arguments

sizes

(Optional) A sequence (list or tuple) with one item for each input parameter. The item
should be a type object that defines the type of the input parameter, or an integer value
specifying the maximum length of the string parameter. If the item is None, the
parameter type is determined by the value provided in the execute*() method.

Code sample

Class reference 28

© 2024 Devart

cursor = connection.cursor()
in the further call to cursor.execute() the supplied parameters will be treated as `int`, `float` and a string of length 20
cursor.setinputsizes(int, float, 20)

Remarks

Once set, the types of parameters are retained on subsequent calls to the execute*()
method until the cursor is closed by calling close(). To clear the set parameter types,
call the method with no arguments.

execute(operation[, parameters])

Prepares and executes a database operation.

Arguments

operation

A string literal that specifies the database command (SQL statement) to be executed.

parameters

(Optional) A sequence (list or tuple) of values to be bound to the corresponding
parameters of the operation.

Code sample

cursor = connection.cursor()
cursor.execute("create table test_table(column1 , column2)")
cursor.execute("insert into test_table(column1, column2) values(:parameter1, :parameter2)", (1, 1))

Remarks

The types of the input parameters can be pre-specified using the setinputsizes()
method. To execute a batch operation that affects multiple rows in a single operation,
use the executemany() method.

executemany(operation[, sequence of parameters])

Prepares and executes a batch database operation.

Arguments

Python Connector for Salesforce29

© 2024 Devart

operation

A string literal that specifies the database command (SQL statement) to be executed.

parameters

(Optional) A sequence (list or tuple) of sequences of values, each of which is to be
bound to the corresponding parameter of the operation.

Code sample

cursor = connection.cursor()
cursor.execute("create table test_table(column1 , column2)")
cursor.executemany("insert into test_table(column1, column2) values(:parameter1, :parameter2)", ((1, 1), (2, 2), (3, 3)))

Remarks

The types of the input parameters can be pre-specified using the setinputsizes()
method. This method is significantly faster than executing the execute() method in a
loop.

fetchone()

Fetches the next row of a query result set.

Arguments

This method has no arguments.

Return value

Returns a single sequence (tuple, list or dict according to the rowtype value) that
contains values for each queried database column, or None when no more data is
available.

Remarks

The ProgrammingError exception is raised if the previous call to the execute*() method
didn't produce any result set, or no call was made yet.

fetchmany([size=cursor.arraysize])

Fetches the next set of rows of a query result.

Class reference 30

© 2024 Devart

Arguments

size

(Optional) The number of rows to fetch per call. If the number isn't specified, the
arraysize attribute determines the number of rows to be fetched.

Return value

Returns a list of sequences (tuples, lists or dicts according to the rowtype value)
for each result row. Each sequence contains values for each queried database column.
An empty list is returned when no more rows are available.

Remarks

The ProgrammingError exception is raised if the previous call to the execute*() method
didn't produce any result set, or no call was made yet.

fetchall()

Fetches all remaning rows of a query result.

Arguments

This method has no arguments.

Return value

Returns a list of sequences (tuples, lists or dicts according to the rowtype value)
for each result row. Each sequence contains values for each queried database column.
An empty list is returned when no more rows are available.

Remarks

This method returns as many rows as are left in the result set, regardless of the
arraysize value. The ProgrammingError exception is raised if the previous call to the
execute*() method didn't produce any result set or no call was made yet.

next()

Returns the next row from the currently executed SQL statement.

Python Connector for Salesforce31

© 2024 Devart

Arguments

This method has no arguments.

Return value

Returns a single tuple that contains values for each queried database column.

Remarks

This method uses the same semantics as fetchone(), except that the standard
StopIteration exception is thrown if no more rows are available.

scroll(value[, mode='relative'])

Scrolls the cursor in the result set to a new position.

Arguments

value

An int value that specifies the new cursor position.

mode

(Optional) The value can be either relative or absolute. If the mode is relative (the
default value), the value is taken as offset to the current position in the result set. If the
mode is set to absolute, the value states an absolute target position.

Remarks

The IndexError exception is raised in case a scroll operation attempts to access an item
beyond bounds of the result set. In this case, the cursor position is left unchanged.

addtypecast(database type|module type object|column name|
description|dictionary[, Python type])

Defines a data type cast rule to use when fetching data from the cursor.

Arguments

database type

Class reference 32

© 2024 Devart

An int value that specifies the database data type code. You can also pass multiple data
type codes in a tuple or list.

module type object

A module type object that specifies the family of the database data types.

column name

A string literal that specifies the name of the database column. You can also pass multiple
string literals in a tuple or list.

description

A description object that describes the column in a rowset. You can also pass multiple
objects in a tuple or list.

dictionary

A dictionary of pairs column name:Python type that specifies individual cast rules for
a set of columns. The method argument Python type can be omitted.

Python type

A Python type object that specifies the target type to which to cast the database type, or
an int value which means that the column will be of type str and defines its maximum
length.

Code sample

cursor = connection.cursor()
all database columns with data type code (Salesforce database type ``) will be casted to the Python type `int`
cursor.addtypecast(, int)
all numeric database columns will be fetched as strings
cursor.addtypecast(salesforce.NUMBER, str)
data of "column1" will be fetched as a string
cursor.addtypecast("column1", str)
data of "column2" will be fetched as `int` and data of "column3" will be fetched as a string of maximum length 50
cursor.addtypecast({"column2":int, "column3":50})

Remarks

The cast rule affects only the current cursor. To define the cast rule for all cursors created
within the connection, use the addtypecast() connection method. The type code of a
database column can be obtained from the type_code attribute of the corresponding
element of the description attribute.

cleartypecast()

Python Connector for Salesforce33

© 2024 Devart

Removes all data type cast rules defined for the cursor.

Arguments

This method has no arguments.

Remarks

This method doesn't remove cast rules defined for the entire connection using the
addtypecast() connection method.

close()

Closes the cursor.

Arguments

This method has no arguments.

Remarks

The cursor becomes unusable after calling this method. The InterfaceError exception
is raised if any operation is attempted with the cursor.

setoutputsize(int size[, int column])

This method is provided for compatibility with the DB API 2.0 specification. It currently does

nothing but is safe to call.

Attributes

connection

A read-only attribute that specifies the connection object to which the cursor belongs.

arraysize

A read/write attribute that specifies the number of rows to fetch at a time with the

fetchmany() method.

Remarks

The default value of the attribute is 1 meaning to fetch a single row at a time.

https://peps.python.org/pep-0249/

Class reference 34

© 2024 Devart

rowtype

A read/write attribute that specifies the type of rows fetched with the fetch*() method.

Possible attribute values are tuple, list and dict.

Remarks

The default value of the attribute is tuple.

description

A read-only attribute that describes the columns in a rowset returned by the cursor.

Return value

Returns a tuple of description objects with the following attributes:

name

The name of the column in the rowset

type_code

The database type code that corresponds to the type of the column

display_size

The actual length of the column in characters for a character column, None otherwise

internal size

The size in bytes used by the connector to store the column data

precision

The total number of significant digits for a numeric column, None otherwise

scale

The number of digits in the fractional part for a numeric column, None otherwise

null_ok

Py_True if the corresponding database column accepts NULL values, Py_False otherwise

Remarks

Python Connector for Salesforce35

© 2024 Devart

The attribute is None for operations that don't return rows or if no operation has been
invoked for the cursor via the execute() method yet. The type_code attribute can be
used in the addtypecast() method to define a data type cast rule for the corresponding
column.

rowcount

A read-only attribute that specifies the number of rows that the last execute() call produced

by a SELECT statement or affected by UPDATE or INSERT statements.

Remarks

The value of this attribute is -1 if no execute() call has been made on the cursor or the
rowcount of the last operation cannot be determined.

rownumber

A read-only attribute that specifies the current 0-based index of the cursor in the result set.

Remarks

The next fetch*() method fetches rows starting with the index in the rownumber. The
attribute initial value is always 0, regardless of whether the execute() call returned a
rowset or not.

lastrowid

This read-only attribute is provided for compatibility with the DB API 2.0 specification. It

currently returns None.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

9.4 Connection pool class

Connection pool class
The connection_pool class is used to manage the connection pooling mechanism. This

class provides properties for enabling and configuring pooling.

Properties

https://peps.python.org/pep-0249/
https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Class reference 36

© 2024 Devart

enabled

max_size

min_size

lifetime

validate

Properties

enabled

Enables connection pooling.

Syntax

enabled = False | True

Remarks

Set enabled to True to enable connection pooling. The default value is False.

max_size

The maximum number of connections allowed in the pool

Syntax

max_size = int
max_size[pool_id: int] = int

Remarks

When the maximum number of connections in the pool is reached, new database
connections will be destroyed instead of released back into the pool after you close
them. The default value of max_size is 100.

If no pool ID (pool_id) is specified, the maximum number of connections is set for the
default connection pool. If the pool ID is specified, the maximum number of connections
is set for the pool with the given ID.

Python Connector for Salesforce37

© 2024 Devart

min_size

The minimum number of connections maintained in the pool

Syntax

min_size = int
min_size[pool_id: int] = int

Remarks

Set this property to a non-zero value to prevent removing all connections from the pool
after they have been idle for a long time. The default value of min_size is 0.

If no pool ID (pool_id) is specified, the minimum number of connections is set for the
default connection pool. If the pool ID is specified, the minimum number of connections
is set for the pool with the given ID.

lifetime

The maximum time (in milliseconds) during which a database connection will be kept in the

connection pool

Syntax

lifetime = int
lifetime[pool_id: int] = int

Remarks

The creation time of a connection is compared with the current time, and the connection
is destroyed if that timespan exceeds the lifetime. If lifetime is set to 0 (by default),
the lifetime of a connection is infinite.

If no pool ID (pool_id) is specified, the connection lifetime is set for the default
connection pool. If the pool ID is specified, the maximum number of connections is set
for the pool with the given ID.

validate

Specifies whether to validate a connection when it's returned from the pool.

Class reference 38

© 2024 Devart

Syntax

validate[pool_id: int] = False | True

Remarks

If the value of validate is False, the pool will validate a connection only when it's added
to the pool. If the value is True, the pool will validate a connection when it's added or
drawn from the pool. The default value is False.

If no pool ID (pool_id) is specified, the validation rule is set for the default connection
pool. If the pool ID is specified, the rule is set for the pool with the given ID.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

10 Support

Support
This page describes the support options and programs available for users of Python

Connector for Salesforce.

Support options

The following support options are available for users of Python Connector for Salesforce:

Annual maintenance and support service through the Python Connector for Salesforce

Subscription program

Community assistance and technical support through the community forum.

Advanced technical support from the product developers through the Python Connector for

Salesforce Priority Support program.

Subscriptions

The Python Connector for Salesforce Subscription program is an annual maintenance and

support service that provides the following benefits:

Support through the Priority Support program

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html
https://support.devart.com/portal/en/community/

Python Connector for Salesforce39

© 2024 Devart

Access to new versions of the product

Access to nightly builds with hotfixes (on demand)

Notifications about new product versions

Priority Support

Python Connector for Salesforce Priority Support is an advanced product support service

from the product developers. Devart staff will provide a response to the customer via email

within two business days from the date of receipt. Priority Support is available for users with

an active subscription.

If you need assistance with our product, send us an email at support@devart.com with the

following details:

The license number of your product

The version and edition of your product

A detailed description of the issue

(Optional) Scripts for creating and populating the database objects

If you have any questions regarding licensing or subscriptions, send us an email at

sales@devart.com

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

11 Licensing

Licensing
Python Connector for Salesforce License Agreement

--

PLEASE READ THIS LICENSE AGREEMENT CAREFULLY. BY INSTALLING OR USING

THIS SOFTWARE, YOU INDICATE ACCEPTANCE OF AND AGREE TO BECOME BOUND

BY THE TERMS AND CONDITIONS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE

TERMS OF THIS LICENSE, DO NOT INSTALL OR USE THIS SOFTWARE AND

PROMPTLY RETURN IT TO DEVART.

mailto:support@devart.com
mailto:sales@devart.com
https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Licensing 40

© 2024 Devart

INTRODUCTION

This Devart end-user license agreement ("Agreement") is a legal agreement between you

(either an individual person or a single legal entity) and Devart, for the use of the Python

Connector software application, demos, intermediate files, printed materials, and online or

electronic documentation contained in this installation file. For the purpose of this Agreement,

the software program(s) and supporting documentation will be referred to as the "Software".

LICENSE

1. GRANT OF LICENSE

The enclosed Software is licensed, not sold. You have the following rights and privileges,

subject to all limitations, restrictions, and policies specified in this Agreement.

1.1. If you are a legally licensed user, depending on the License Type specified in the

registration letter you have received from Devart upon purchase of the Software:

- The "Single License" allows you to install and use the Software on one or more computers,

provided it is used by 1 (one) user for the sole purposes of developing, testing, and deploying

scripts or applications in a single company at one physical address in accordance with this

Agreement.

- The "Team License" allows you to install and use the Software on one or more computers,

provided it is used by up to 4 (four) users for the sole purposes of developing, testing, and

deploying scripts or applications in a single company at one physical address in accordance

with this Agreement.

- The "Site License" allows you to install and use the Software on one or more computers,

provided it is used by unlimited number of users for the sole purposes of developing, testing,

and deploying scripts or applications in a single company at one physical address in

accordance with this Agreement.

- The "OEM License" allows you to install and use the Software as part of a licensee's script

or application that can be deployed to web servers, application servers, batch servers,

desktops, and other end-user devices. This definition includes the ability to install and use the

script or application containing the Software an unlimited number of times, without any

additional fees in favor of the licensor.

1.2. If you are a legally licensed user, depending on the License Type specified in the

registration letter you have received from Devart upon purchase of the Software:

Python Connector for Salesforce41

© 2024 Devart

- The "Subscription-based License" allows you to install and use the Software on a single

computer only during the subscription term specified at purchase. An Internet connection is

required to activate the license and check the license status when the Software is used.

Once the subscription term is over, you will be able to either stop using the Software or renew

the license for a new subscription term.

- The "Perpetual License" allows you to install and use the specific Software product version

on a single computer without an active subscription. A subscription provides access to new

product releases, regular upgrades, and support for new server versions provided during the

subscription term.

1.3. If you are a legally licensed user of the Software, you are also entitled to:

- Make one copy of the Software for archival purposes only, or copy the Software onto the

hard disk of your computer and retain the original for archival purposes

- Develop and test Applications with the Software, subject to the Limitations below.

1.4. If you have the "OEM License ", you are also entitled to:

- Make any number of copies of the Software to deploy it to your end-user

- Deploy the Software to your end-user as a Software installation package or integrate it into

your Applications.

1.5. You are allowed to use evaluation versions of the Software as specified in the Evaluation

section.

No other rights or privileges are granted in this Agreement.

2. LIMITATIONS

Only legally registered users are licensed to use the Software, subject to all of the conditions

of this Agreement. Usage of the Software is subject to the following restrictions.

2.1. You may not reverse engineer, decompile, or disassemble the Software.

2.2. You may not build any other Python packages through inheritance for public distribution or

commercial sale.

2.3. You may not reproduce or distribute any Software documentation without express written

permission from Devart.

2.4. You may not distribute and sell any portion of the Software integrating it into your

Licensing 42

© 2024 Devart

Applications.

2.5. You may not transfer, assign, or modify the Software in whole or in part. In particular, the

Software license is non-transferable, and you may not transfer the Software installation

package.

2.6. You may not remove or alter any Devart's copyright, trademark, or other proprietary rights

notice contained in any portion of Devart files.

3. REDISTRIBUTION

The license grants you a non-exclusive right to reproduce any new software programs

(Applications) created using the Software. You cannot distribute the Software integrated into

your Applications unless you are an "OEM License" holder. Any Devart's files remain Devart's

exclusive property.

4. TRANSFER

You may not transfer the Software to any individual or entity without express written

permission from Devart. In particular, you may not share copies of the Software under "Single

License" and "Team License" with other co-developers without obtaining proper license of

these copies for each individual.

5. TERMINATION

Devart may immediately terminate this Agreement without notice or judicial resolution in the

event of any failure to comply with any provision of this Agreement. Upon such termination

you must destroy the Software, all accompanying written materials, and all copies.

6. EVALUATION

Devart may provide evaluation ("Trial") versions of the Software. You may transfer or

distribute Trial versions of the Software as an original installation package only. If the Software

you have obtained is marked as a "Trial" version, you may install and use the Software for a

period of up to 30 calendar days from the date of installation (the ""Trial Period"), subject to

the additional restriction that it is used solely for evaluation of the Software and not in

conjunction with the development or deployment of any application in production. You may not

use Applications developed using Trial versions of the Software for any commercial

purposes. Upon expiration of the Trial Period, the Software must be uninstalled, all its copies

and all accompanying written materials must be destroyed.

Python Connector for Salesforce43

© 2024 Devart

7. WARRANTY

The Software and documentation are provided "AS IS" without warranty of any kind. Devart

makes no warranties, expressed or implied, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose or use.

8. SUBSCRIPTION AND SUPPORT

The Software is sold on a subscription basis. The Software subscription entitles you to

download improvements and enhancement from Devart's web site as they become available,

during the active subscription period. The initial subscription period is one year from the date

of purchase of the license. The subscription is automatically activated upon purchase, and

may be subsequently renewed by Devart, subject to receipt applicable fees. Licensed users

of the Software with an active subscription may request technical assistance with using the

Software over email from the Software development. Devart shall use its reasonable

endeavors to answer queries raised, but does not guarantee that your queries or problems

will be fixed or solved.

Devart reserves the right to cease offering and providing support for legacy Python and

Database versions.

9. COPYRIGHT

The Software is confidential and proprietary copyrighted work of Devart and is protected by

international copyright laws and treaty provisions. You may not remove the copyright notice

from any copy of the Software or any copy of the written materials, accompanying the

Software.

This Agreement contains the total agreement between the two parties and supersedes any

other agreements, written, oral, expressed, or implied.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

12 Uninstall the connector

Uninstall the connector
To uninstall the connector, run the following command.

pip uninstall devart-salesforce-connector

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

Uninstall the connector 44

© 2024 Devart

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

https://www.devart.com/company/contactform.html?category=0&product=python/salesforce
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/salesforce/feedback.html

	Overview
	What's new
	Installation
	Windows
	Linux
	macOS

	Activation
	Activate a license
	View the license details
	Deactivate a license

	Using the module
	Connection parameters
	Connection pooling
	Data types
	Class reference
	Module class
	Connection class
	Cursor class
	Connection pool class

	Support
	Licensing
	Uninstall the connector

