Contents |

Table of Contents

Part] What's New 1
Part Il General Information 9
T © 1Y =Y - 9

2 = U (1= 12

B S0 o [T =Y 0.0 1= LN 17

L R 0 oY 11 Y- 111 o 71 1 72 17

5 Using Several DAC Products in One IDE ..o e re s s s se s e s nn e e s emn e 23

0o T 1T o T T 1= o L I N 24

7 Hierarchy CRartcovuiiiiii i e e e aaas 25

8 EditiONS ..cuieiiiiiii i e e ran e 27

L T T =Y 4 =1 ' 29

LV I € =Y T T ST U o o T o 33

11 Frequently Asked QUESLIONSuciiiiiuiiiiiii i e 34
Part lll Getting Started 39
I 1T - 1 1 - X o P 45

2 Connecting To SQLite Databaseccooireiimiiiiiiiii e 48

3 Creating Database ODbJECtScccciiiiieiiiiiiii s e re s e a s e s e s e s n s ennssnnsen 53

L O T =] 3 e T T 56

5 Inserting Data Into Tablescoiieiiiiiiiiii 59

6 Retrieving Dataccooeiimiiiiii i e 65

7 MoOdifying Datac.cccuiiiiiiiiiii s r s s rn s s s e rra e rn s rn e e e e reanrnnarnraennarnneen 67

LS 0 1Y g Lo TN o o =Y 2 3N 71

L2 B 1= o)V L= 75
Part IV Using LiteDAC 77
1 Connecting in DIreCt MOdecuiiuiiiiiiii i re e s s e e s m s sm s ransrnnsrnnrnnsnnnns 78

2 Disabling DireCt MOMEcoeuiiiuiiiiiiiiiirrs e s s rn s s s e rrasrr s rnssmssrassrassrasrnasnnnsenssenssennrnnn 79

3 Updating Data with LiteDAC Dataset COMPONENLSccciiuiieiiiiimiiriir s ean s 80

4 Master/Detail Relationships ...t e e 81

5 Data TYPe MapPPing ..ouiceiieiiiiiiiriririrr s s s s s s sasrassassassassassassassassansassansasnnn 83

L 0 - = T = g e Y/ o 1 oY o PN 89

7 Database File ENCryptionccoieeiiiiiiiiiiiii s e e 91

8 Disconnected MoOdecooeiiniiniiii i s raaranaen 95

9 BatCh OPerationscccciieiiiiiiii i s e rn s ra s e s e s e s s n s sm s ra s sransra s rrasrnnsrnnrennrennrnnn 97

10 Increasing PerfOrMancCecccuiiiuiiiiiiiiiirir s s s s rnsrnrrarrsrnssnssm s nnssransnansnnssnnsennns 101

© 2024 Enter your company name

1 SQLite Data Access Components

11 Working in an Unstable NetWoOrkKcciviiiiiiiiiiiiiirrirsr s s s s s s s s s s s nanen 103
L7 = 1 L= 104
13 DataSet ManNAger ... cc.iiiuiiie i e e e ra 105
B = 11 o 3T o 111
15 Writing GUI Applications with LiteDACcooe i s s re s rna e rna s 112
BT 0 4 ¥ T e £ T X T e Yo Y 1 4V 112
17 64-bit Development with Embarcadero RAD Studio XE2coiiiiiiiiiicccrcecreea e 115
18 Database Specific Aspects of 64-bit Developmentcooeiiiiiiiiiii e 121
PartV Reference 121
T 0 2 LY o= L
Classes
TORCUISOE ClaSS: - -veeeuteeaureesureaaueaaauseeaaseaaaseeaauseesseaaaseeeaaseeaasesassessaseasasesasseesaseesaseeasseesnseesseeanssessnseesnseaannn 124
=100 0= = T PRSPPI 125
Types .. 125
TBeforeFetchProc ProCedUIe REFEIENCE .. .t vttt ettt 125
ENUM @ratioNS «rerereimiimiiiiiiii i s e e s e s e r e E e e r e s E R SR SR NN AR RN R EAEEAEARRNSaEEREaRaRRERannn 126
TCRISOIAtIONLEVE! ENUMEIALION -+t tteteeteett et ettt ettt ettt sr ettt e e esae et e e bt e bt e neereennesaneennens 126
TCRTransactionAction Enumeration. 127
TCUrsorState ENUMEIationcvueie it e a e s
7 0 3 = - o 3] o
ClaS S @S errnntamammmmenmanunnnsnnesssssnsesssesssssssssesssssese s s sesssssssess e smes oo sseisieiia ettt
QIO {2 7= 1 o] 1Y oY= T 0 =T Y
Y=Y o= =
Properties <o
AbortOnKeyViol Property
ADOTtONPrODIEM PrOPEIY . .veveviiteieeie ittt 135
ChangedCoUNt PrOPEIY....ccveueeeiiiieiisieeetes ettt 135
COMMItCOUNT PrOPEITY.. .. veueieietiitetiste ettt 136
DESHNALION PrOPEITY. . cveiveietiietistci et 136
FieldMappingMode Property.......c.vie i 137
KeyViolCount Property. .. 137
YT o) o Yo R o] o= Y2 138
Y oY T30 0T o= o 138
Yo IVZ=To (0o TH T o o =Y Y 139
ProblemCOUNt PrOPEItY.....coveveeieieiieieiesec st 139
LT oTo e [T g1 o] oY= g 140
Lo TN oY = o] =Y 1 OSSR 141
1Y 73T T =TRSO PR TR PR 141
=YV C= 30, 2T o PP 142
Bvents e .. 142
OnBatchMoveProgress Event..... ... 143
Types 143
TCRBatchMoveProgressEvent Procedure REfErence........coeoveeueiiiiiiiiiiiiii 143
ENUM @ratioONS »eeorancummmimmmummmeemnmmosnensenesmensnsssmnmessssosssssssssessssesssses e e siaisssieisisesise e 144
TCRBAtCHMOAE ENUMEIALION. «- -+ veteerteereeiteete ettt ettt sttt esre e reesreenn e e nneeneesnesnneannenn 144
TCRFieldMappingMode ENUMETIation.........eovevieieiiieieiisiccsiciete ettt s 145
BB 04 30§ o7 o 1o o N 146
Classes
L 3= o] Vo] (o =TSRSS 147

© 2024 Enter your company name

Contents 1

MEIMDEIS oottt 147
PrOPEItIES coeieiieie e 148
DataHEadEr PrOPEIty.....cceoveetiiiiiiti ittt 149
EncryptionAlgorithm Property ... 149
HashAIGOTthM PrOPErtYcceeeveeiiiieicc et 150
INValidHASNACHON PrOPEItY... .. veoveviieiiitiieie ittt 150
PASSW OFA PrOPEItY.....cviveeetiicieitcietes ettt e s 151
Y=Y 1T o =P P T 151
SEtKEY MELNOM.eeveeeieici et 152
ENUM ETratiONS »eecrentimmmimiimmmenmomintetmnsnimmenmocenmonesmennesensesntsesnseeensamsememsesemsenseesesamsnisesmsiemstissetissntsmentssentarsstatassanss 153
TCRENCDataHEAdEr ENUMEIALION. -« veaveereeeteiee ettt n e e e e e e s 153
TCREncryptionAlgorithm Enumeration ... 154
TCRHashAIGOrithm ENUMEIAtioN.coviueeeiiiceiieeetcs et 154
TCRINvalidHashACHON ENUMEIAtIoONcovviviiriiiiiiicieic e 155
0 Y N 1= o (- RSP 155
[0 o o = L LT e LTt PPN 156
TDA ALCIEET ClaSS -t tetutteenuttertte et ettt e e ettt e e et e et e et et e ea bt e et e e e be e e sab e e st e e e abe e e sas e e et e e e ts e e nan e e steeebneenareeeteeeane 156
=100 0= =T O O P OO PR P PP PTOOPPTRPI 157
0T oY= 1 =Y OO 158
ACHVE PrOPEItY . oueevieietieic et 158
AULOREGISTEr PrOPEIY «.veuevevereeiieetctcisiet ettt bt 159
CONNECHON PrOPEITY «oueveieeiieietiteie ettt e 159
Y= g To T < O T P PO OO PR PP P PTOOPPTRPI 160
SENAEVENT IMEENOM- -ttt ettt sttt e e e eae e e en e e sne e sareesaneeeas 160
LS T 1Y, =3 (o T OO SS U PP PO P S SPPPROURN 161
SOP MEENOT v e 162
V2= 01 =T O P OO PP RO P PO PPTOOPPRPI 162
(]3] = Tl =Y 7=1 o | SO PSSP O PP RS PPPROURN 163
TYPES reecrrecnrecnreenn RS RR s s 163
TAlerterErrorEvent ProCedUre REfEIENCE: . it ittt ettt ettt enee s 163
L 0.7\ 11 4 o T o
ClaSS @S rrrrerrrrmsrmarrssrsismrmasresrssrnrns st rns s e ra st s s na e ra st s e naane R EaERaERa R RREEEESEEEREESERSEESSTERTRSTESTREESETRSERTRaTen
TDADump Class
Members
Properties
(0o T g =Yl (7o a T o o =Y YOO 168
(=Y LU T o o) o= O 169
(@] 0 0TIl = 1] o T=Y o 2O 170
LT oY o =Y o OO 170
TabIENAMES PrOPEItY.. ... veueiieiiiiiieieiie ettt b e sa e ne e 171
Y= 1T o TSP T PP PRSPPI 172
BACKUDP MEEhOT .. vttt et 172
BackUPQUETY MEHOMcviiiiiiiiiii e s 173
BacKUPTOFIIE MEtNO. .. . veueeveieiiiicieic et 174
BackupToStream Method.oovivririiieiiiiic e 175
Restore Method...................
RestoreFromFile Method
ReStOreFromMSIrEam MENOM . -« cuveeueereteeiee ettt ettt n e nte e eaees 177
Y=Y 01 £ PSP O PP PRSP 177
ONBaCKUPPIrOGreSSs EVENTciv ittt 178
OnError Event ... 179
ONRESIOrEPrOgresSSs EVENL.....oiv ittt 180
TDADUMPOPLONS ClASS .- vevereremeiriieiiiteiitesietc sttt sttt r et ae e e ae e sae e ns e e ne s ean e 180

© 2024 Enter your company name

SQLite Data Access Components

MEIMDEIS oottt
PrOPEItIES coeieiieie e
AAADIrOP PrOPEItY . e cveeseeiieiieitit it
Completelnsert Property. .
GenerateHEadEr PrOPEItY.. ... v iviverieiesieiectiiete ettt 183
QUOLENAMES PrOPEITY...c.veuveieiiitiiti ittt 183
TYPES reecereeserresenresaensnn e A A AR R AR A A AR s s s 184
TDABackupProgressEvent Procedure REferenCe........covuveiriiieiiiiicccicccc e 184
TDARestoreProgressEvent Procedure REfErENCE ... vvieiiiiiiiiiii e 185
ST 0 7 e - Y T e 185
ClASS@S rerrerresrmermarmatioirititiatere s ettt e ta s aa e et aa e aanaaEaar R e RN EaEaAEREREEaNERAEaSEREEARTENTRSERERREaRTRTnnTnnnnn 186
TDA COIUMN ClASS: -ttt utteentrteruttaette ettt st e ettt e ea e et e eete e e eae e e et e e e be e e sas e e st e e e abe e e sab e e sat e e ents e e saneesabeeebneenareesteeenne 187
=100 0= =T O O P OO PR P PP PTOOPPTRPI 187
0T oY= 1 =Y OSSR 188
FIeldTYPE PrOPEItY .. cveveeeetiietiiteiet et 188
Name Property ... 189
TDA COIUMNS ClIAS S+t utteenttterutteett ettt ettt ettt ettt ettt et e et et e ea bt e st e e e be e e sab e e st e e e bs e e saneesateeebneenareesteeenne 189
=100 0= =T O O P OO PR P PP PTOOPPTRPI 190
0T oY= 1 =Y OO 190
temMS Property (INAEXEI) . ..eoveuiieieiiieiieieei e 191
TDA LOAAET ClASS - +teuvreertrteruttaatte ettt st e ettt e ea st e st e eeate e e eat e e st e e e te e e sa bt e st e e e abe e e sab e e st e e e bs e e naneesbeeebneenareenteeeane 191
=100 0= =T O O P OO PR P PP PTOOPPTRPI 192
0T oY= 1 =Y OSSOSO 193
COlUMNS PrOPEITY. c.eveueeteieiiitee ettt b e bbb a e b 194
CONNECHON PrOPEITY «ovvveeeiiiteietieie ettt 194
TabIENAME PrOPEItY...ccvieeuiieiitieieie et 195
Y= g To T - T PO PSP P PP P PTOOPPRPI 195
CreateColUMNS METNOM- cveiee ittt et 196
Load Methodcovveneniene 197
LoadFromDataSet MEENOM. ... vecveeueeueriieiieiie ettt et 197
0o U0 a1 = = LY =] 13T Lo F PSSR 198
0o U0 a1 = = LY =] 13T Lo F PSSR 198
0o U0 a1 = = LY =] 13T Lo F PSSR 199
Events
ONGEtCOIUMNDALA BVENL -+t e vtteette ettt ettt sttt ee e e sareesaneeeas 200
ONPrOgreSS BEVENL . ..eviuiieiiieeeteee et 201
(0812 V1 =] = T Y=Y o | OO PP PR OO 202
TDALOAAErOPtONS ClaSS. .. veeueeueeieieieitieie ettt ettt st s r e a e er e eae e sa e ee e e aesaeeaeeae s 203
=Y 1 o= =P OO UPTRPN 203
PrOPEILIES eoeeeeieeie bbb 204
UsEBIaNKV alues Property........coviveieuiiieiiitiieiicie ettt 204
TYPES e s 205
TDAPuUtDataEvent Procedure REfEIENCE - ... i ittt ettt ettt st e e 205
TGetColumnDataEvent Procedure REfEIrENCE.o i 205
TLoaderProgressEvent Procedure REfEreNCe........civiueiiiiiciiiiciicc e 206
A 0. X T T o 207
ClaSS @S rrrrerrrrmsrmarmasrcirmrmsrasresrnsns st s rna s ra s na s s et s e naanarasraERaERaRERREEEEEREERRESERSEESSTERERSERSTREESETRSERTRaTen 208
TDASCHIPE ClaSS - veueeveieieiteieeic sttt bt a s b e e 208
Y=Y oY= = PO U PP PR S RPRTR 209
o 0= 7= OO 211
Connection Property . 212
DAtaSEt PrOPEITY. .. oveveueiteietiieicstc ettt 213
(=Y LU T T o o) o= O 213

© 2024 Enter your company name

Contents \"/

Y[=Yl oY 1= 214
g To o = oY oT=T o Y 214
L To [0 EoT=T = o] o= o 1 215

EndPos Property
Macros Property

SQL PrOPEILY «vevevetieiieieieie s
R (YT o] =Y o £ RS 217
R (@ Y=Y B o o =Y /OO 217
R (2 o1 o] o= R 218
StAtEMENES PrOPEIY .o e cveeeieeieeete e e 218
Y= {3 Te o < P PP PP 219
BreakExec Method.... ... 220
[o (O L =Y= L =] 1T Yo ST OU ST VRRUPPOPPN 220
[T oU L= =1 1 o Yo PSPPSR VRUPPOPPN 221
[o U1 = =YY =1 1 o Yo PSP O PRV R UPPOPPNE 222
EXECULENEXE MEENOM- -+ -ttt ettt ettt ettt et e st e sbe e e san e e s e e steeenne 222
ExecuteStream Method.... ... 223
[T LY = Yo KoY =1 1 T Yo [PP ROPPPP 223
Y et o) 1Y =T = 1Y =3 T T O 224
Y=Y 01O 225
ATEEIEXECULE EVENT -ttt ettt ettt e b et e st e bt e e s b e e e b e e ne e e eaneas 226
BefOrEEXECULE EVENT. - -ttt ittt ettt ettt ettt e st e et e s e nre e st e 226
(03] = Tl ==Y o | ST ROT PP PPOURN 227
TDA SHALEIMENT ClaSS -+t ervveeruteeautee et tett e ettt e rat e st e ettt e ea bt e et e e et et e sab e e st e e eabs e e sab e e et e e eats e e sabeeeabeeebneenareeeteeenne 227
=100 =Y = PO 228
PrOPEItIES oo 229
g To o = oY oT=T o Y 230
L To [0 EoT =T o] o= o 1 230
EndPos Property
Omit Property
Params Property
SCIPE PrOPEItY . veveeeieeeeee s
SQL PrOPEILY «veveereitieiieiei e
B YT o] =Y o ORI 233
StartOffset Property ... 233
B (2 o1 o] o= ORI 234
Y= {3 Te o < P PRSP 234
[T eU L= =1 1 o Yo ST POU RS VRUPPOPPNE 235
TDASEALEIMENES CIASS -+t euvvteruteeauteeertttert e ettt e sttt e st e e et e e ra bt e e bt e e be e e sab e e st e e eabe e e sab e e sabeeeats e e sabeeeabeeesneenaneesteeenee 235
=100 =Y = PO 236
PrOPEItIES coeieie e 236
teMS Property (INAEXEI) .. veoveueveieiiieie ettt 237
TYPES reecereeserresenresaensnn e A A AR R AR A A AR s s s 237
TAfterStatementExecuteEvent Procedure REfErENCE -« i et 238
TBeforeStatementExecuteEvent Procedure REefErENCEo uure ittt 238
TONETOrEVENt ProCedUIre REfEIENCE: -« ittt ettt ettt et e e e st e e aee 239
ENUM ETratiONS eecrenttmmmmmiimmmmenmemitetnnmnimmenmocenmonenmemmesetsesstsesnseeessensememsesemsenneeeinentisnisesisiemstistetissnismentssenmarsstatassanss
TErrorAction Enumeration
8 DAS QLMONILONccieeiieiieeeierrees s e rre s s e e e s s s e e s s s rra s serrasssserrassssernnssssennnssssennnssssennnsnnsnnnnn
ClASSE@S rerrerrermsrmarmaticiritiiratatnrse et na et ta st s s e et aa e aanaaEaa R R RaEeaRaAEEEEEEaNSRARASERSEERTRNRRSTRTRRtaRTaTnnTnanan
TCUSTOMDA SQLIMONIEOT ClaSS: - evveeeeurrereeeaiureeeeaittereeaateeeeaaateeeaesaseeeeaaaseeeaeaasseeessaseeeesaasseessanssneeessnssseessannees 242
010 o= =PRSS 242
0T oY= 1 =Y OSSOSO 243
ACHVE PrOPEItY . ouveveeetiitciete e 244

© 2024 Enter your company name

Vi SQLite Data Access Components

(]2 o)1 (0T @ oy Te) TR = oY o= 244
(@0 o Ta TSI = T 1= RS 245
TraCeFIags PrOPeItY .. ov ettt 245
Events ...
OnSQL Event
TDBMONILOrOPONS ClASS. - +v vevevereeteieiesieieetisiete sttt b e s be e b e e s e 247
MEIMDEIS oot 247
PrOPEItIES coeieiieie e 248
HOST PrOPEITY «ooveveeieeiieiiee s 249
POt PrOPEItY «oveoieeieeeieie s 249
ReCcoNNECtTIMEOUL PrOPEItY.....cviveieiiiciietiiete et 250
SendTimeout Property .
Types ..
TDATIACEFIAGS St uveeueriuiiiiiiiiie e
TIMONILOrOPHONS SEL.-veeuvreuieiiiiiiisie e
TONSQLEvVENt Procedure REfErENCE. . .. viveviieieieiete et 252
ENUM ETratiONS »eecrentimmmimiimmmenmomintetmnsnimmenmocenmonesmennesensesntsesnseeensamsememsesemsenseesesamsnisesmsiemstissetissntsmentssentarsstatassanss 252
TDATraceFlag ENUMEIation.........coveuiieiiieeeiiicic sttt s 253
TMONItOrOPtioN ENUMEIALION. ... vevveieiesieeete et 254
9 DBACCESS ...cciiiiicice e —————
Classes
EDAEITOE ClaSS - v ueeiuieiuei ittt ettt st e e a e e e s e e s s e e e s ae e b e e s h e e b e e e e e n e s e e s e reesaeesr e e 260
Y=Y 0 0 oY= = TP RPN 260
0T oY= 1 =Y OSSOSO 261
COMPONENT PrOPEITY «vvveieeiiteietiiete sttt 261
ErrorCode PrOPErty ... coviveeeieieieitciete ettt 262
TCRDAIASOUICE ClASS. -+ veeveeiueeitie ittt e s e e e e b e e ae e n e e s aaesaesanee s 262
Y=Y 0 0 oY= = PP P T 263
TCustomConnectDialog Class 263
Y=Y 0 o =Y = PP P T 263
0T oY= 1 =Y OO 264
CaNCEIBULLON PrOPEItY ..ot eueiiieieiceieietcc ettt 265
CaPLiON PrOPEILY .ovvveeeeteietietee ettt 266
ConnectButton Property... 266
DIalogCIaSS PrOPEItY... .. vevereieiiitiietetet ettt 267
LabEISEt PrOPEItY.....coveueieeietiieieieete et 267
REtIES PrOPEItY . oueeveieiiitiiete et 268
StOreLOGINTO PrOPEITY- ... vcveueietetetiieietc ettt 268
Y=Y (T Yo - PP P T 269
EXECULE IMBENOM ..+ e e e 269
TCUStOMDA CONNECHON ClASS .-+ ve vttt 270
=T 00 =Y = 270
0T oY= 1 =Y OSSR 272
ConNECEDIAIOG PrOPEItY .. .cuveveeitiieieiteeetiet et 273
CONNECESIING PrOPEItY.. . cueeveeitiieieete e 274
CONVEIEOL PYrOPEItY .. eueeieieiie ittt 275
InTransaction Property. . 275
LOGINPIrOMDE PrOPEItY.. e veeeteieiiitiiete ettt 276
OPLONS PrOPEItY . .oveveeeetiieietee ettt 277
POONNG PrOPEItY . o.eveeieiitiieti ettt e 277
POONNGOPHONS PrOPEItY.cveveiiitiietiteiieti et 278
1= 1T T 1= 279
ApplyUpdates MEthod.coveiiiiiiiiiii e 280
ApPlyUpdates MEthOd........cuvveuiiiiiiiiice s 281

© 2024 Enter your company name

Contents Vil

ApplyUpdates Method........coouiiiiiiiiii e 281
ComMit MEENOM. .-+ v 282
CONNECE MEENO. «. v v 283
CreateSQL Method.... ... 284
DISCONNECT MENOM - vt 284
GetKeyFieldNames MEthod. ... covoveireieiiicic e 285
GetTableNameEs Method.c.oiriiiiiiiiici e 286
MONItOrMesSage MetNOd.eveueiuiiciiicie ettt 287
PING MEENOT i 287
RemoveFromPOOl MEhOD.o 288
ROIDACK MEENOM. + -+ttt 288
StartTransaction Method 289

BV ENES e 290
ONCONNECHONLOST EVENT.c..oveiiii ittt 290
(@1 = oYl Y= o PP 291

TCUSTOMDADALASEE ClaSS. .+ v v cveeuieiieie ittt st 291

Members

Properties
BaSESQL PrOPEITY ..o vcueveietiicieitciete ettt e 303
(0o To 1 To TR = oY 1= R 304
CONNECHON PrOPEITY - vveuieiieieiii ittt 305
DataTyPEMAP PrOPEItY.....ccoiitiiiiitiitiitieii s 305
=Y TR T o o) o713 306
DetailFields Propertyooeeuiiiiiiii i 306
DiSCONNECEA PrOPEItY....cveviiitiitiiti ettt 307
FEtChROW S PrOpEIrty. .. ioveeiieiieie e
FIErSQL PrOPEItY. . e eeeteeieete st
FINAISQL Property .. eeeeeieeiieie e
ISQUETY PrOPEITY. . eeueeieieite ittt bbb
KeyFields Property........
MacroCount Property
MACTOS PrOPEItY - veoveeiieiiiiititete s
MasterFields Property......ccoiiiiiiiiiiii e 312
MaStErSOUrCE PrOPEITY....coveveieieitiietisiei et 313
Options Property
ParamCheck Propertycooviiiiiiiiiiiii it 316
ParamCouNt PrOPeItycoueouiiiiiiiiiiiti et 317
Params PrOPerty .. .oeoeeieieiiiiie s 317
ST To [0 1V = oY =T 318
RefreshOptions Property.......ccuoiiuiiiiiiieiiicie i 319
O Y A 4 =Ye3 (=Yoo Y=Y £ 319
SQL PrOPEILY «eeveieiieiieiiei s 320
SQLDelete Property... . 321
SQLINSEMt PrOPeItY ... cueeuieieieiie ittt 321
SQLLOCK PrOPEItY...veeueeuieuieieiie ittt s 322
SQLRECCOUNE PrOPEItY. .. cuveveieitiiiiite ettt 323
SQLREFIESN PrOPerty . cveveieiieiieiii ettt 324

SQLUpdate Property
UniDirectional Property.

Y= {aTe o - PSPPSR
2o [ATAY L= =<3 1 VoY PO
BreakEXEC MEENOM. - - e e e e e e e e e e
CreateBloDSIrEam IMETNO - ee ettt ettt sat e b e e st e e nateeanee e 332
DEletEVWVNEre IMEENOM: -« -t ee ettt ettt ettt ettt e st e et e e s e e nbeesteeenne 333

© 2024 Enter your company name

Vil

SQLite Data Access Components

TCustomDASQL Class.-
=Y 000 Y=Y =PSRN
PrOPEItIES oo

EXECULE METNOA - e s
EXECULE METNOA .- e s
EXECULE METNOA .- e s
Executing Method
(=Y (0] g =Y [, =11 T Yo T
Fetching Method. .. vee e
FetchinGAIl MEthOd.c.eeeeieie e
FINAKEY MEtNOT ... vt
[0 |AY,7= 1o o JH =1 1 oY PSSO P PRSP
FINANEArest Method. -« .« ceeeeeeei e e e e e e
[T L= 7= 0 0 1Y 7=Y 1 oY PSPPSR
GetDataType Method....
GetFieldObject Method
GetFieldPreCiSioN METNOM: . -« e ettt ettt ettt et e st e s be e s e s e ste e e 342
GEtFIeldSCale IMETNOM - - - et ettt ettt ettt ettt ettt e eab e st e e st e e e san e e sbeesteeeane 342
GetKeyFieldNames MEthod. ... covovewrieiieiiiieiie e 343
GetOrderBy Method
GotoCurrent Method
[Yo 9817 7=1 {1 oY PPN

Yot o) 1Y =T 0 =1 1Y =3 1 T T O 346
ParamByName MethOd-.....cveueieieiiiiriisieic st 347
Prepare MEthOT.vveeieeeie et 348
REfrESNRECOIT MEENOM. -+ttt ettt ettt ettt st e et e e st e s e steeeane 348
RESTOrESQL IMEENOM. -+ttt ettt ettt ettt ettt sttt e sab e st e e e be e e nan e e nabeeeteeeane 349
SAVESQL IMEENOM- -+ttt ettt h et e et e e st e s st e e e bt e e ehe e e eat e an e e e nne e nateeaareeeas 350
SetOrderBy MEtNOG .. .veveueieeieicie ettt e 350
SQLSAVEA MEthOT. «. i 351
UNLOGCK IMEBENOM - -ttt ettt ettt ettt ettt e sab e e st e et e e e nan e e nabeesbeeenne 351

oY =Y 0] (= PPN 352

AfterExecute Event..
F N A R (o] T = V2= 10 PSP POPPR 353
AfterUpdateEXeCULE EVENt...voi e s 354
(2T Lo = =L (o AT = 2= | RSP U ST PR PP OPPN 354
BeforeUpdateEXECUE EVENL .. cviveieieieeictietc e 355

ChangECUrSOr PrOPEITY .. .coveueeetiiieiesie ettt s 360
CONNECHON PrOPEITY - vveuieiieieiie ettt
DEDUQG PrOPeItY - e
FINAISQL PrOPEItY . ecueeieieiteie et
MaCTOCOUNE PrOPEItY ... vevitiiiiiiti ittt
Macros Property...........
ParamCheck Property
ParamCouNt PrOPEItYcoveoviiiiiiiiiiiti i
Params ProPerty .. .oeoeeieiiiiieie s
ParamValues Property (INAEXEr)covouerruiiriiiieeitieie sttt 366
Prepared Property
Row sAffected Property

SQL PrOPEILY «vevevetietieieiee s

Y= {aTe o < PSPPSR
BreakEXEC IMEINOM- - ettt ettt ettt ettt et e eab e st et et nb et e e 369
[o U (=Y =1 1 o Yo ST U ST PRUPPOPPNE 370
[o U (=Y =1 1 o Yo ST U ST PRUPPOPPNE 370

© 2024 Enter your company name

Contents IX

EXECULE MEENOM .o
EXeCUting MEthOd. -« - e
1010 =TT o TN 1Y, =1 oY Y
FINdParam Method........veeie i
MacroByName Method
ParamByName Method
Prepare Method. ... oo
UNPrepare Methodoeeiee
WaitEXeCUting MEthOD: - v eveenieeiieie e
BV ENES e
ATLEIEXECULE BVENT vttt s r e e esne e e 377
TCUStOMDAUPAALESQL ClASS -+ v euevererreieriiiteieeie ittt et a b eae s 378
MEIMDEIS oottt
PrOPEItIES cveieieie e
DataSet Property.
DeleteObject Property
DEleteSQL ProPerty. . ..covevetiiiiiiti ettt
INSErtObJECT PrOPEItY .. veveieiiiiie e
INSEIrtSQL PrOPerty e veeieeiieiesie e
LOCKODIECE PrOPEItY - eeueeureiiiiiieti ettt
oo T I, 0T oY
ModifyObject Property
MOifYy SQL PrOPerty. .. e vevetiiiitiiti ittt
RefreshODJECE PrOPEItY .. oovcveieeeiteietisicic sttt 386
RefreSNSQL ProPerty - .ooveoveiiiiiiiiiti et 387
SQL Property (INAEXEI)- .. .cveiveieiiiiiieie s 387
Y Y T Yo £ 388
APPIY MEINOT .o 388
T2 [I V=Y Vo 389
BN 0o T [0 T 2= Y- O P T 390
Members
Properties
L E=T o1 Yo [= o oY Y 392
NAME PrOPEILY. . e eveeieeiieie s 392
VAIUE PrOPEITY .o veveieei it 392
Y=Y T o £ 393
[T o] =311 =Y 1 T o PP 393
Enable Method ... 394
TDACONAIIONS ClASS. -+ -veeurerurreieereieeereestee st e ste e st e eere et s e s e sreesree s reesreenaeeare e e e sn e e e e sanesmeesreeaneesreenneeneenneennes 394
MEIMDEIS oot 395
PrOPEItIES coeieie e 396
Condition Property (INAEXEI). ... ueueeeueieiiieieieeies ettt s 397
L E=T o1 Yo = o oY Y 397
teMS Property (INAEXEI) .. veoveueveieiiieie ettt 397
TEXE PrOPEITY veveieeieete e 398
WHEIESQL PrOPEItY. . e veeueeueiiititit ittt bbbt 398
Methods
Add Method
N Lo 1Y =1 3T T Ot 400
N Lo 1Y =1 3T T Ot 401
Delete MEthOd ..o veeeieticie e s 401
TS o] =31 =1 (T o PP 402
ENAbIE MEthOd. ..o veevietieie e s 402

Find Method

© 2024 Enter your company name

SQLite Data Access Components

Gt MENOO oo 403
100 L3O 1Y, = 1o o PSPPSR 403
REMOVE MELNOM -+ttt et e e e e s e e e e nn e e 404
TDAConnectionOptions Class.... ... 404
MEIMDEIS oottt 405
PrOPEItIES coeieiieie e 405
Allow ImplicitCONNECE ProPerty.......ooveevieiieiieiieiieieie i 406
DisconNECtedMOdE PrOPEITY....cviveirieieiiitiiete et 407
KeepDesignConnected ProPerty........oc v ruiireiieeitcieie et 407
(oY oT= Tl o =l o] =Y o £ 408
TDACONNECHONSSLOPHONS ClASS - veuvveeeurrieietiiteiisie ettt b s a e ae s 408
Members
Properties
CACEIT PrOPEITY. . veeveesieiieiieie e 410
CErt PrOPEItY «eoveeiieiieii e 410
[00) 1= g Y = o o= YRR 411

Key Property
TDADataSetOptions Class

MEIMDEIS oot
PrOPEItIES coeieieie e
F AT (o] o =Y 0Tz LY o] o =Y o 4 RO 417
(072 To] o 1= 07 o] 1=y o S = e o= R 418
CompressBIODMOTE PrOPEItY.......ccviurreiiieiiiieietes ettt 418
DefaultValues ProPerty......ccovoieriieieiesicie ettt 419
DetailDelay PrOPEItY.....ccovrveeieieiiciete et 419
T Y @ o T 0T o =Y 420
FlatBUffers PrOPerty. .. .cooe et 420
INSErtAIISEtFIEldS Property......ccooiiiuiiiiiiiiiciiiei e 421
LocalMasterDetail Property........ocooueieieieiiiiii i 421
LongStrings Property................. ... 422
MasterFieldSNUlADIE Property.......coovviieriiiieiisicc et 422
NUMDEIRANGE PrOPEItY ... cveveietiitiieiec ettt e 423
QUETYRECCOUNE PrOPEItY. .. cveveiiiiiti it 423
QUOLENAMES PrOPEITY...c.eeuveieitiitiiti ittt 424
RemoveOnRefresh Property... ... 424
LYo U1 =Y | 1=y Lo SR o] 1= 425
RetUrNParams ProPerty......ccovoueriiiieiiiiccctcete e 425
SetFieldsREAdONIY ProPerty........ociviueieeiiieiisieistcs ettt e 426
StrictUpdate Property......ccooeoeieiiiiiecc 426
B0 S =Te [P Tl . T o =Y RO 427
UpdateAlIFIEldS PrOPerty.....covoveviueieiiictiitiiete et 427
UpdateBatChSize Property.......ooueiiiiiiiiiiiiee 428
TDAEncryption Class
MEIMDEIS oot
PrOPEItIES coeieie e
g TeT Y7 (o gl = oY o= 430
FIEIAS PrOPEItY ... veeueeuieieieite sttt 430
TDAMapRule Class.... . 431
MEIMDEIS oottt 431
PrOPEItIES coeieiieie e 432
DBLENGtNMAX PrOPEItY . ..cveveieeeitiieiesieic sttt 433
(] =TT 1011V o oY Y= o 434
DBSCAlEMAX PrOPEITY .. e veeeeeieieitiieies ettt e 434
DBSCaIEMIN PrOPEItY. .. vevetitiitiitiiti ettt 435

© 2024 Enter your company name

Contents Xl

[oL = o o =Y OO 435
T o [T Yo T o) o= o 4 436
1Yo [N =Ty =Y T o= 436
FieldScale Property... ... 437
T o Y7 T o] 1= 1 437
IgNOrEEITOrS PrOPEItY . .veveieiiiti et 437
TDAMAPRUIES ClaSS. .. v euveuereuieieiieieiteeete ittt a e e b et b e st a st b e e e eaennn 438
MEIMDEIS oottt 438
PrOPEItIES cveieieie e 439
IgNOrelNValidRUIES PrOPEItY ... veoieveieieitiieie sttt 439
TDAMetaData Class
Members
Properties
(0o T Yol o o T o o= OO 446
MetaDataKind Property.......cooeoeiuiiiiiiiiieieieiei s 446
RESTIHCHONS PrOPEItY.. . vevetiiiiiiti ittt 447
Methods .o ... 448
GetMetaDataKinds Method........cuoiviiuiiiiiiiiiiic i 450
GetReStrCtONS MEHO. ... cviieiiiii i 451
QI = = T 41O T 451
MEIMDEIS oottt 452
PrOPEItIES oo 454
ASBIOD PrOPEItY. ... veiveeiieiieiiiiit it 455
ASBIODRET Property....oveeueeieiiiititii e 456
F =] 1 o] =Y £ RO 456
F XS] 1 (=Yoo T =Y RO 457
ASLArgeInt ProPerty.....eoeeeeiiiiiiii e 457
ASMEMO PrOPEItY. . e veeiieiieiieiet e 458
ASMEMORES PrOPEItY. .. ccueeueeiiiiiiiiii et 458
AsSQLTimeStamp Property..... ... 459
ASSHIING PrOPEItY. . ettt 459
ASWIAESEING PrOPEIty. .. ecveeeiiiiiiie et 460
(1= Y] oY o o] oT=T 5 Y 2 460
5] N U T T=Y 2 461
ParamType Property ... 461
SHZE PrOPEILY -voveiiitieiiei e s 462
VAIUE PrOPEITY .o veveieei it 462
Y77 T T [OOSR 463
ASSIGNFIEId MENOT. .-+ veeeeieeei et 463
AsSIgNFIeldValue Methodcvoveieirieeiieiecie et 464
LoadFromFile MEtNOT.oov e 465
LoadFromStream MEthOd.oovriiiiiiiiicicis s 465

SetBlobData Method
SetBlobData Method
SetBlobData Method
TDAParams Class

Members
Properties .
teMS Property (INAEXEI) - . veoveueiveietiieieetceie e 469
Y= {aTe o - PSPPSR 470
[T =T = T Y =1 1 o Yo [PP OPROUPPP 470
ParamByName MethOod-.....veueieeiieieiinieic et 471
TDATIANSACHON ClASS -+ +eureteteteautee ettt ettt e ettt e ettt e asee e et e e ae e e s ae e e ease e e aae e e asb e e eabe e e aa e e e asteeeabe e e aneeeanteeeneeenneeeanneeans 472
=100 =Y =P 472

© 2024 Enter your company name

Xl

SQLite Data Access Components

PrOPEItIES coeieiieie e 473
F o3 1173 T o)=Y RO 474
DefaultCloSEACHON PrOPEItY....coviveieierieeietiete et 474

Methods
(070714100101, =3 {1 T o PP 476
ROIDACK METNOM. « vt 476
StartTransaction MEthO.civviviiiiiiii s 477

BV ENES e 478
(07010000 211 A =YL= | PPN 478
ONCOMMItRELAINING EVENT.c.evereitiieiiieeie et 479
(0701 = oYl Y=Y | PPN 480
OnRollback Event... 480
ONROIIbACKRELAINING EVENL...vevviieiiiieietiieteeeti et s 481

112 T o T =TT

MEIMDEIS oottt

PrOPEItIES coeieieie e

Active Property
AsDateTime Property

ASFIOAt PrOPEItY . .veoveeiieiieiiiiii it 485
F XS] 1 (=Yoo T =Y RO 485
ASSHIING PrOPEItY. . ettt 486
NAME PrOPEITY. . e cveete ettt 486
VAIUE PrOPEITY .o veveitietieiee e 487
B =TT o TSR =TSO P PSP 487
Y=Y o= 488
PrOPEItIES oo 488
teMS Property (INAEXEI) - . veoveueiveieieieieetceie et 489
Y 7= g o PP 489
ASSIGNVAIUES MENOT. ... cveveieiectiieis et 490
Expand Method.............
FindMacro Method
ISEQUAI MEENOM. -
Yot o) 1Y =T =1 1Y =3 T T O 492
FS 1= 1Y =Y 1 Vo 493
TPoolingOptions Class.. ... 494
Y=Y o= 494
PrOPEItIES oo 495
ConNeCtioNLIfetime ProPerty.......cociviieeeiiiciesiceetes et 496
MaXPOOISIZE PrOPEITY .vvveueeteicieitcietes ettt 496
MINPOOISIZE PrOPEItY. .. uvevetitiitiiti ittt 497
L 0T o] 1o o o =Y 2 497
Validate PrOPEItY ... ooveeeeveeeieceete et 498
TSmartFetchOptions Class ... 498
Y=Y o= 498
PrOPEItIES coeieie e 499
L E=T o1 Yo = o oY Y 500
LIV foT o3 Qo o] oT=T 3 Y2 500
PrefetchedFields Property....... ... 501
SQLGEtKeYValueS Property.......coiiiiiiiiiiiiiieiiiiei 501
TYPES reecereeserresenresaensnn e A A AR R AR A A AR s s s 502
TAfterExecuteEvent ProcedUre REFEIENCE .. . vi i 502
TAfterFetchEvent ProCedUre REFEIENCE v ettt 503
TBeforeFetchEvent Procedure REFEIENCE.o vi i 503
TConnectionLostEvent ProcedUre REFEIENCE: v v rr e it 504

© 2024 Enter your company name

Contents X1

TDAConnectionErrorEvent ProCedUre REfEIrENCE. . i i ettt 505
TDATransactionErrorEvent ProCedUre REfEIrENCE- « . t ettt ettt 505
TREFrESNOPHONS SEL-.. veueveietiitieete et s 506
TUpdateExecuteEvent Procedure Reference...
ENUM ETratiONS »eecrentimmmimiimmmenmomintetmnsnimmenmocenmonesmennesensesntsesnseeensamsememsesemsenseesesamsnisesmsiemstissetissntsmentssentarsstatassanss 507
BT L= A = 01U 100 = =110 o POV P PP RPURPPPPNE 507
B To LY o Te [0 = 011 = = L) P POV P PO PRPURPPPPNE 508
TRefreshOpPtion ENUMEIatioNovoveveieiieeeiiicicsccte et s 508
LR A oo o = U4 =Y = 1o SRR 509
VariableS secrermceammciumucnmencnneniasnmssenmsmnnseennesnenieesnmenesmensesetsesetsesnseeensesesmemseseinestseinseetisniesaiseseistiateinsesinentstentssents 509
BaseSQLOIABENAVIOr VariabIE. .« .. eeeteeeiieeeiiii ettt ettt ettt sttt e et e et et e san e e et e sbeeeeanees 510
ChangeCursor Variable..............
SQLGeneratorCompatibility Variable............coveiiiiiiiiiiiii 511
0T T (4 X =L

L 00 P2 Yo = X T LT T
TCustomLiteDataSet Class
1YY 012 1= U
PropPErtiES oo s
CONNECHON PrOPEITY - ovveueeuieieiit it
ENCryption Property. . oo ee e s
OPHONS PrOPEItY .. e eeieuieiieieie s
SMAFELCH ProPerty ... oo
TCUSTOMLItETADIE ClasS ... e iueeiiiiiiiiie it sae s sae e nes
1Y 012 1= TN
PropPErtiES oo s
LMt Property - eeeeeeeeee
Off St PrOPEITY e veeteeti et s
OrderFields Property. .. .ooiereiiiiii s
TableName Property......

TCustomLiteUserCollation Class
1Y 012 7= SN
PropPErtiES oo s

CollationName Property
Connection Property

BV ENES e e e e

ONCOMALE EVENT ..o vvieiieiicieii e 549
TCUSOMLItEUSEIFUNCHON ClASS --+vvveveeiiiii i e s 549

=T 00 =Y = 550

0T oY= 1 =Y OSSR 551
CONNECHON PrOPEITY - vveuieiieieiii it 552
FUNCHONKING PrOperty. .. ooveiveiiiiiiiiiiiee e 552
FUNCHONNAME PrOPEITY. . .cveveueteeietiieie ettt 553
Params PrOPEItY . oo ee et 553

Y= 01 C T TSRO 554
ONEXECULE BVENL . .eii i 555
OnFinal Event
OnStep Event .

B I (= = 2= Lo (U o T 0 =T Pt

1YY 012 1= N

e 0] =T o 11 N
DestinationConNECioN PrOPeItY.......covoueiiiiieiiiciitiei e 559
DestinationDatabaseName PrOPErtYcoeevrueieiieiieiieie ittt 560
PagesPerStep PrOPeItY.... ..o ettt 561
SOUrCECONNECHON PIrOPEITY- ... v eveteeieieteiiiectctce ettt 561

© 2024 Enter your company name

XIv

SQLite Data Access Components

SourceDatabaseName Propertycooveeiiiiiiiiiiiic 562
WaltDEIAY PrOPEIY .. cueiveuietiieetiiteeets ettt 563
WatTIMEOUL ProPEItY ... ccveeueeiiiiiitii it 564
WaitWhenLocked Property 565
Y=g o PP 565
2 P Tod 0T o BT =1 g oY 566
BV ENES e 567
ONPrOGreSS EVENL . .veviueicieieeciecte ettt 568
B I =TT g T Y=o 1o T2 =P 569
MEIMDEIS oottt 569
PrOPEItIES cveieieie e 572
ClientLibrary Property 574
ClientLibraryVersion Property........couw ettt s 574
ConNECtDIAIOG PrOPEItY .. eeeeveeeieiciesiee ettt e 575
CONNECLEA PrOPEIY .. cvveueeuieieiti ittt 575
DAtabase PrOPEItYcoviveeeuiicieiteete ettt 576
Debug Property................ ... 576
ENCryptionKey PrOPEItY....ccceoieueiiiieiisicie sttt e 577
LOGINPrOMPt PrOPEItY.....coveeveiiitiiiiiti et 578
OPONS PrOPEItY . ..o cveeuieeieiieie i s 578
POONNG PrOPEItY .. eeveeeieiieieieet s 579
L oTo) 1o o0 oy 7o) d TR = o] 1= 580
Y 7= g o PP 580
CreateDataSet Method.coviuriiiii s 582
CreateMetaData Method.........cooiiiiiiiiic s 583
CreateSQL MEthOd. ... vvcueeieie i 583
CreateTransaction MEtho........civ i s 584
EncryptDatabase MEthOT.cviveiriiieiiitiicicsc e 584
ReleaseSavepoint MEtNOGcovivriririeiitiete e 585
RollbackToSavepoint Method 586
SAVEPOINE MEENOM -+t eveveieieiee ettt 586
StartTransaction MEthO.civvivriiriiii s 587
StartTransaction MEthO.civvivriiriiii s 587
StartTransaction MEthO.civvivriiriiii s 588
Events
ONCONNECHONLOST EVENT.c..cveiiieiiti ittt 590
(@1 ol Y= o PP 590
TLiteConNeCtioNOPHONS ClaSS ... eueeveeeieiieiiiieieeie ittt a e eae s 591
MEIMDEIS oot 591
PrOPEItIES coeieie e 593
ASCIDAtaBase PrOPeItY.......cccoviveiiuriieiiieieeie st 596
2 U TS =0 LU L e o= 597
CipherLicense Property 597
CoNNECIMOAE PrOPEItY. .. cveieieitiiti ettt 598
(1Y o 1= L o) 1= 598
DefaultCollations ProPerty........coviveiririeiitiieies et 599
DIrECE PrOPEItY .. e cveeeeeeieiieie s 599
DisconnectedMode Property... 600
[E=T o1 =Y 07 I o o oY Y 600
L T oL Y = T T o= 601
EnableLoadEXteNSION PrOPertyciviereiirieiiiiee ettt 601
EnableSharedCache Property.......coccvieieiiieiesice et 601
ENcryptionAIGOrithm Property.......coveeeueeeiiieiesiec et 602
ForceCreateDatabase Property.........cooueieiiiiiiiiiiiiicic e 603

© 2024 Enter your company name

Contents XV

oYYl g NG V2T e = 604
IntegerASLargelnt PrOPerty........coeirueiriiieie ittt 604
BT = 1Y 0T [N T =Y RS 605
LockingMode Property 606
NativeDate Property......cccoeeiiiiiiiiiiii e 607
ReadUNCOMMItEd PrOPEItY. .. .coviveiriericiiitiiete ettt 607
Yo 0T e U TR = o] oY= R 608
B 11000 o = A T =Y RO 609
USEUNICOAE PrOPEItY .. c.viuvitiiiiiiti ittt 609
TLiteDataSetOPtIoNS ClassS. . . viverrrrreririerie ittt b et 610

Members
Properties
AdvancedTypeDetection Property

L E=T o1 =Y 07 I o o oY Y 618
L T oL Y = T T o= 618
ExtendedFieldsSINfo Property ..o 619

FullRefresh Property
PrepareUpdateSQL Property

SetEMPLY SrTONUI PrOPEItY .. eveveeeresieeetesieie ettt e 620
TrHMY arChar PrOPertyceoeeieiiiiiei e 620
UNKNOW NASSHIING PrOPEItY .. cvviveeeetesieieitiietc ettt 621
TLItEDAtASOUICE ClASS. e rerurreueerueieieerieeaee st et e et er et e e s e s e s s e s e e s s e e sne e r e e e e san e e e e smeeameesreesneenreenneene e neennes 622
Y=Y o= 622
=Y = LT o] o T =Ty O 622
Y=Y o= 623
B IR C= 1Y = e=] =Y = Y O = T U P PP 624
Y=Y o= 624
PrOPEItIES coeieie e 628
CONNECHON PrOPEITY - vveuieiieieiie ittt 629
TLiteQuery Class
Members
Properties
= od gV AN [o] o= o 644
(oo 1Y oY [Y1 = o] o= o £ 644
UpdateObject Property. 645
UpdatingTable Property......coveueriieiriesieicetiete et 646
IS 0 =T P 647
Y=Y o= 647
PrOPEItIES oo 649
(0o T Yol o o T o o =Y RS 651
B IR =Y =1 o)L= =TSSP PR T 652
Members
Properties
FetchAll Property
(oo 1Y oY [=Y1 = o] o= o £ 666
(@] =Yg =Y = oY oT=Y o YOS 666
TabIENAME PrOPEItY. ... veeueeeeiiiitiiei e 667
UpdateObject Property. 668
TLIEUPAAtESQL ClASS -+ vevvveuereeeuiiteiete ittt sttt a st a s b e s b e e st b e e e eaeees 668
Y=Y o= 669
B I =L YT o] =Y (1o T =< P TSP 670
Y=Y o= 670
PrOPEItIES cieieiieie e 671
[0 0] =TT g N =T Y T o= OO 672

© 2024 Enter your company name

XVI SQLite Data Access Components

(0o T Yol o a T o o =Y ORI 672
Y=Y 01O 673
[0 1)1 = L= Y Y=Y o | PSS 673
TLiteUserFunction Class ... 674
=100 =Y =P 674
Types .. 675
TLiteCollatioNEVENt ProCedUIe REFEIENCE. ..« i ettt ettt e sab e ste e e e 676
TLiteFunctionExecuteEvent ProCedure REfErENCE . . t i ettt ettt 676
TLiteFunctionFinalEvent ProCedUre REFEIENCE. -« tt ettt ettt et e 677
TLiteFunctionStepEvent Procedure REfEreNCe........oivrveiiiiicieicieicce e 677
ENUM ETratiONS »eecrentimmmimiimmmenmomintetmnsnimmenmocenmonesmennesensesntsesnseeensamsememsesemsenseesesamsnisesmsiemstissetissntsmentssentarsstatassanss
TLiteFunctionKind Enumeration......
TLitelsolationLevel Enumeration

11 LiteDACVCI ... e
[0 o o = L LT e LTt PPN
TLiteConnectDialog Class
1YY 012 1= U
e 0] =T 11 N
DatabaseLlabel PrOPEItYccoviveieieieieiiitcteei ittt et 683
ShOW Databas@ PrOPEItY......cveueuereeiiieiciiectctc ettt e 683
ShOW PasSW Ord PrOPEITYcoviuiieiiiiiieieiete ettt 684
7 T =Y 1T Y 684
ClaSS @S rerrerrrrmsrmarrasioirmrmesrasresrnrns st rssrna s ra s na s na e e ra s naaneRasEaERaERaERERREEEEEREEREESERSEESSTEREESERSTESEEaRTRsERTRaTen 685
L =Y 0o =TRSO 685
Y=Y oY= = PO U PP PR S RPRTR 686
o 0= 7= OO 688
CONNECHON PrOPEITY . eveeeuiieiciccieic ettt 689
Mode Property...........
ObjectTypes Property...
Types = s
TLIteDUMPODJECES St ..veiuriiiiiiiiiie e
ENUM @ratioNS reeerreermeiimiitiiiii i e e s e e e s e Ea s R e Ea e R A E R R ra R R raarnn

TLiteDumpMode Enumeration
TLiteDumpObject Enumeration

B T = = PPN
CIASS @S -cvrrsuncnnnsauansssssnnssnsansnssnsnssastssnsnsssnssnsnsssnnsnsssnnnsssnssssnssssnsnnsnssnsnnsnsssnnstssssssssssssnsnsnnsnnnnsnstssnnsnsnnnsnnnnnnnnann
| I 0= = o 0= =T TP TPTPPPOR PRIt
1YY 00! o 1=) =T PP PPPTUPPPPTNY
B (= o - e [PN
ClaS S @S eecemtocenmananmanmesennennnsennseesnssnsssensessnsessssessesssssnsssssnssssssssssssssssentstesisssimeiieseissstsessesetatsiatsesatserssernsacans
=] 0 =Y [T G = 1Y OO PPUPTOR PPNt
=100 =Y = PO
PrOPEItIES coeieie e
AutoCommit Property......c.ccovnveuene. 698
AutoCommitROW CoUNt Propertyoovveuieuieiiieieieic i 698
CONNECHON PrOPEITY - cvveuieeieieiie ittt 699
L= o= o L= L@ o 1o g ER 0 = TSR 700
Members
Properties .
QUOLENAMES PrOPEITY. . ueeuveieitiitiiti ittt 701
BT I Y o T o RS 702
ClASSE@S rerrerrermsrmarmaticiritiiratatnrse et na et ta st s s e et aa e aanaaEaa R R RaEeaRaAEEEEEEaNSRARASERSEERTRNRRSTRTRRtaRTaTnnTnanan 702

© 2024 Enter your company name

Contents XVII

1 C= T o =T O N 702
MEIMDEIS oot 703
PrOPEItIES coeieiieie e 705

(0o T Yol o a T o o =Y ORI 706
(212 ESTC o o o= Y 707

16 Lite S QL IMONI O L.iuiiiiie ittt iiiiiiii i st e sarsasasassasassassassassassassassnssassnsanssnssnssnssnssnssnnsnnsnnen 707

Classes
B = O]IV 0 a1 oY 7= o PRSPPI 708
Y=Y 010 0 1= = TSP RRRPP N 709

A 11 L= 311 0.2 1 - O 709

ClaSS @S rerrrerrrrmsrmsrmasreirmsmasrasrssrnsne st rssrna s ra s s s s e ra s aaane R ERERaERaRERREEEEaEERRRESERSEESSTERERSERSTREESRTRSERsTRaTen 711
N1 oYU (O = YoYU PSPPI 712
=100 0= = T TR RUP 712
o 0= 7= OO 713
F oW1 (= N o o) o =Y o YOO 714
(21217 Y o 1] o 1=Y A 714
(1= Y] o= 0 o] o= 42O 715
=Y Yo (T o] =Y o O 715
(@] oY1= o i Y7 o T= Y o] o =Y 1 725 OO 716
Offset Property......
Ow ner Property
S ot= o o] 1= 1 OO
£ T3 (o) o =Y OO
L= (o] o T2 F= 1= TP
1772010 1= = PPN
PrOPEItIES oo
AsString Property...
AsWideString Property
51U T oYY [= o] o= o O
£ T3 (o) o =Y OO
177231 Lo Yo L= PPN
ASSIGN MEENO. -+
[0 1=T= T 1Y, 7=3 1 Lo Lo [P RP PP PPN
o F=To L o0 a1 (=N, =1 oY FE PP PP PP ORPPPPPPPIRY
LOadFromMSHrEam IMETNOM: - - eeeeeee ettt ettt ettt ettt e et e et e et e et e e teeeenbeesabeeeseaeenbeesnbeeaneaeanns 726
Read Method
SaveToFile Method
SAVETOSITEAM IMETNOM: -+t eeentee ettt ettt et e e et e et e et e e e eabeeeateeaneeaeaneeeanseaanseaaaneeeanneaanseaaan 728
TrUNCALE MEENOM- - -+ttt ettt e e e e e e e e e e et e e e e e e e e e e e e rreeeeeeeeeeeaan
RTA 1 (=313 1 T Yo I PP P PP POPPPPN
TCOMPreSSEABIOD ClasSS ... i viiiiiiiiitiiiieie e bbb
1772010 1= = PPN
Properties
Compressed Property
COmMPresSEdSIZE PrOPEItY .. .o iviverieieiieiitisietc ettt 734
L 210 o= o] A = TN
1772010 1= = PPN
TIMEIMDALA ClIASS: - -+« eveeteeeeeeeeeaiaittie ettt e e e e e e e s et ettt et e aeaeaasa e aa s a e e eeee e e e e eeeeeeeaaaannbnenneeeeeeeeeeeeaaaannsnnnnnneeeeee
1772010 1= = PPN
Q0010 177 1= F= T RN
1772010 1= = PPN
Properties oo
AttributeCount Property

© 2024 Enter your company name

XVill

SQLite Data Access Components

Attributes Property(INAEXEr). .. oeoeeurieeeiiieieie et 739
(1= Y] o= N o o] oT=T 5 Y 2 739
Size Property

Methods

FINdARTIDULE MENOD.- .. oo 741
LIS = =T [o)=Y ot A =TT OO ORR 742
MEIMDEIS oot 742
PrOPEItIES coeieiieie e 743
REfCOUNE PrOPEITY «veeveeeieeicteieie sttt 744

Y=g o PP

AAARET MEtNOM. .-+ veviieieieeec e

Release Method -

Types ..
TLOCAEEXOPHONS SEL..veueveieuiiieeiiieti ettt 746
LI T P21 T =Y (T F =] OO RR 746
ENUM ETratiONS »eecrentimmmimiimmmenmomintetmnsnimmenmocenmonesmennesensesntsesnseeensamsememsesemsenseesesamsnisesmsiemstissetissntsmentssentarsstatassanss 747
TCompressBlobMode Enumeration... e 147
TCoNNLOStCAUSE ENUMEIALION. .. .cuveveieiiiii it 748
TDANUMETICTYPE ENUMEIAtION... o v veeeeiieeetiieie ettt 749
LI To= (=Y S @ o Te T = T 4 =Y = e OO RS 750
LS LT T2l = 1000 =Y - 111 1O 751
TUpdateRecKiNd ENUMEIAtioN......cvovvveieieeeiiees et 751
18 IMEMIDS ...t 752
[0 o o = L LT e LTt PPN 752
TIMEMDALASEE ClaSS -+ eeetuureeiieiiiiie ettt et e e et e e s e e e s s e e e e s e st e e e e e s s b e e e e s sra e e e e e aes e e e s aabrne e e e s reneeenarnes 753
=Y 1 o= =P U P UPTRTN 753
0T oY= 1 =Y OO 756
CachedUpdates ProPerty.......cooiiueiiieieieicie ettt 757
IndexFieldNames Property... ... 759
KEYEXCIUSIVE PYrOPEIY. . cuvvveteieietetee ettt e 760
LOCAICONSIaINtS PrOPEITYcueeeieteteeiietctes ettt 761
LOCAIUPAALE PrOPEItY . eveveveieiiitciieteiei ettt 761
Prepared PrOPerty. ..ot 762

Ranged Property .

UpdateRecordTypes Property.......coeeiieiiiiieiiieic et 763
UpdatesPending ProPertyccoviueieiiiieiitiietis e 763
Y= {3 To T < PO P PO U PP P PTUOPPTRPI 764
APPIYRANGE MEINOG. . vttt s 766
ApPPlyUpdates MEthOd........cuviveuiiiieiiiic s 767
ApPPlyUpdates MEthOd........cuviveuiiiieiiiic s 767
ApPlyUpdates MEthOd........cuoiveuiiiiiiiic i 769
CancelRANGE MEthOT- .. . cveueiieieieieieic et 770
CancelUpdates MEthOd.oiv i 771
CommitUpdates MEtO.voviviiiiiiiii e 771
DeferredPOSt MEHOM.vocviiii i e e 772
EditRANGEENd MEthOd ... euveveieiiiiieieie e 773
EditRangeStart Method . 174
(€711]l Y =1 1o Yo IO PP P PP RO VRRURPOPPROE 774
(7= (=] fo] TNV, =3 1Yo Yo [P U UO PPN 775
(7= (=] fo] TNV, =3 1Yo Yo [P U UO PPN 775
[ToT=1 (=317 =1 2o o F PO SRR O URTOPRRURPROPPROE 776
[ToT=1 (=317 =1 2o o F PO SRR O URTOPRRURPROPPROE 777
[ToT=1 (=317 =1 2o o F PO SRR O URTOPRRURPROPPROE 777
(oY= 1 (=Y a1V =Y (Lo Lo PO PPN 779

© 2024 Enter your company name

Contents XIX

[0 ToT= 1 (=1 = a1V L1010 Lo RSP U ST VRUPPOPPN 779
[0 ToT= 1 (=1 = a1V L1010 Lo RSP U ST VRUPPOPPN 780
Prepare MEthOT.vveeieieee et 781
RestoreUpdates Method.. e 182
REVEIRECOIT MEINOM- «- -+t eutee ettt ettt ettt et e st e et e e e san e e nbeesteeeane 782
SAVETOXML IMEINOM- -+ttt ettt et e st s e e e bt eebe e e sat e e eab e e e nne e e sareesaneeeas 783
SAVETOXML IMEINOM- -+ttt ettt et e st s e e e bt eebe e e sat e e eab e e e nne e e sareesaneeeas 783
SAVETOXML IMEINOM- -+ttt ettt et e st s e e e bt eebe e e sat e e eab e e e nne e e sareesaneeeas 784
SEtRANGE MELNOG. -+ eveveeeieieee e 785
SetRaNGEENd MEthOd.ouveieiiiii 786
SetRaANGEStArt MEthOT. ... cvveeieiciesieete e 787

UnPrepare Method.........

UpdateResult Method

UpdateStatus Method.oveveieeeiieieicicic et 789
Y=Y 01O 790
ONUPALEETOr EVENL...veieeeieecicecee ettt e 791
OnUpdateRecord Event... e 192
VariableS secrermceammciumucnmencnneniasnmssenmsmnnseennesnenieesnmenesmensesetsesetsesnseeensesesmemseseinestseinseetisniesaiseseistiateinsesinentstentssents 792
DoNotRais€EXCetioNONUAFAIl Vari@bIE .« ... eeeureertet ettt ettt et 793
SendDataSetChangeEventAfterOpen Variable.........ocovviveieiiiiceiiice e 793
19 VirtualDataSetcoiiiieiiiiiiiir 794
[0 o o = L LT e LTt PPN 795
TCUSTOMVIMUAIDALASEL ClASS - «vveeeerrrreeeaureiaeaitteeeeaateeeeeaaseeraesaneeeeaaasteeaaesasseeeesansaeeeeaassseeeeannsaeeessnssneassanneen 795
2010 o= =PRSS 796
TV IrUBIDATASET ClaSS - uuuvnerettteteeee e et e e ettt e e e e e e e e e e s ettt e e e e e ae e e s e s e s aabaee et e e e eeeeeeeeaa s nasnbneeeeeeeeeeeeeaann 799
=Y 000 Y=Y = P PPPPPRPN 799
TYPES reecrrecnrecnreenn RS RR s s 802
TONDeleteReCOrdEVENt ProCEAUIE REFEIENCE -+ i veeeeieeitieiiie et e et e eeteeeette e st e steeessseesbeessseeessseesreesnseaennns 803
TOnGetFieldValueEvent Procedure Reference.... 803
TONGetRecordCoUuntEvENnt ProCcedUre REfEIENCE . i veeie e ieieeeeitiee ettt ettt e et e e e e e e e s neee e e e stneeeeeannees 804
TOnModifyRecordEvent Procedure REfErENCE........cviveiiiiieiiicieiiei 804
20 VirtualTableoiiiieeiiiire i e 805
ClaSS@S rerrrerrrrmsrmsrrasrcirmrmsrasresrnsnssnara s rna st rasrnasna e e ra e naanerasraERaERaRERREREESREERRRSERSEESSTEREESERSTEEEaETRSERTRaTen 805
TVIFUAITADIE ClaSS «eenvveeuteeauteaaiieaeitee et ee ettt e ettt e e tee e teeeeabeeeateeaseeesabeesaseaasseesabeeamseaansaeeabeeanseaaasseesnseaeseaanns 806
=100 0= = T U RSP 806
o 0= 7= OO 809
DefaultSOrtTYPE PrOPEITY < . eoveeireieie ettt 811
Y= {3 Te o <RSPPI 811
ASSIGN MEINOT. 1+ vt 813
[0 Y=Yo | o0 0 w1 (=31 =20 o PR RTRURURROURN 814
LOadFromMSHrEam IMETNOM: - - eeeeeee ettt ettt ettt ettt e et e et e et e et e e teeeenbeesabeeeseaeenbeesnbeeaneaeanns 815

© 2024 Enter your company name

SQLite Data Access Components

What's New

New Features in LiteDAC 6.2

e Added support for RAD Studio 12 Athens Release 1
e Added support for Lazarus 3.2
¢ Now the Direct mode is based on version 3.45.2 of the SQLite engine

e Added support for automatic detection of transaction state when the transaction is

controlled by an SQL statement

New Features in LiteDAC 6.1

e Lazarus 3.0 is supported

¢ The RealAsDouble option for the Connection component is added

New Features in LiteDAC 6.0

¢ Now the Direct mode is based on version 3.42.0 of the SQLite engine
¢ Added support for RAD Studio 12

e Added support for macOS Sonoma

e Added support for iOS 17

e Added support for Android 13

e Added support for nested Macros in SQL queries

e Added support Display Format for Aggregate fields

¢ Added SHA-2(SHA-256, SHA-512) in hash algorithm for encryption

New Features in LiteDAC 5.3

e Added support for RAD Studio 11 Alexandria Release 3

e Added support for iOS Simulator ARM 64-bit target platform

e Added support for Lazarus 2.2.6

e Added support for GUID fields stored in binary format

e Added support for the YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, GETDATE, DATE,

© 2024 Enter your company name

What's New 2

TIME, TRIM, TRIMLEFT, TRIMRIGHT statements in TDADataSet.Filter
¢ Added support for the mathematical operations in TDADataSet.Filter
¢ Added support for Aggregate Fields and InternalCalc Fields
¢ Added ability to restore from file with TEncoding via the Dump component
¢ Improved reading fields of the BLOB family

¢ Now the SetRange will function according to the case sensitivity of keywords in

IndexFieldNames

New Features in LiteDAC 5.2

¢ Now the Direct mode is based on version 3.39.2 of the SQLite engine
e Added support for RAD Studio 11 Alexandria Release 2

e Added support for Lazarus 2.2.2

e Added support for iOS 15

e Added support for Android 12

¢ Added the CloneCursor method for Query and Table components that allows sharing data

between datasets
¢ Improved the performance of exporting to XML
¢ Fixed bug with mapping table columns of non-standard types to fields of the ftMemo type
¢ Fixed bug with mapping table columns of integer types to string fields

¢ Fixed bug when a connection string parameter value contains a single quote

New Features in LiteDAC 5.1

e RAD Studio 11 Alexandria Release 1 is supported
e Lazarus 2.2.0 is supported

e Windows 11 is supported

e macOS Monterey is supported

¢ Now the Direct mode is based on version 3.37.2 of the SQLite engine

New Features in LiteDAC 5.0

© 2024 Enter your company name

SQLite Data Access Components

e RAD Studio 11 Alexandria is supported
e macOS ARMis supported
e Added demo project for FastReport FMX

¢ Added the IntegerAsLargelnt option for the Connection component

New Features in LiteDAC 4.4

e RAD Studio 10.4.2 Sydney is supported

e macOS 11 Big Sur is supported

¢ iOS 14 is supported

e Android 11 is supported

¢ The JournalMode option in the Connection component is added

¢ The LockingMode option in the Connection component is added

e The Synchronous option in the Connection component is added

¢ Performance with default values of the new options is significantly improved
e Performance of batch operations is improved

e Performance of the FindFirst, FindNext, FindLast, and FindPrior methods is improved

New Features in LiteDAC 4.3

e Lazarus 2.0.10 and FPC 3.2.0 are supported

¢ Performance of Batch Insert, Update, and Delete operations is improved

New Features in LiteDAC 4.2

e RAD Studio 10.4 Sydney is supported
e Lazarus 2.0.8 is supported

e macOS 64-bit in Lazarus is supported

New Features in LiteDAC 4.1

e Android 64-bit is supported

e Lazarus 2.0.6 is supported

© 2024 Enter your company name

What's New 4

¢ Now Trial edition for macOS and Linux is fully functional

New Features in LiteDAC 4.0

e macOS 64-bit is supported
¢ Release 2 for RAD Studio 10.3 Rio, Delphi 10.3 Rio, and C++Builder 10.3 Rio is now

required

New Features in LiteDAC 3.5

e Lazarus 2.0.2 is supported

¢ Now the Direct mode is based on the version 3.27.2 of the SQLite engine
e Multi-threading support is improved

e The DefaultSortType property for TVirtualTable is added

e Performance of the SaveToFile/LoadFromFile methods of TVirtualTable is significantly

increased

New Features in LiteDAC 3.4

¢ RAD Studio 10.3 Rio is supported
e Support for the BreakExec method in the Query component is added

e Support of UPPER and LOWER functions for Unified SQL is added

New Features in LiteDAC 3.3

e Lazarus 1.8.4 is supported
e Performance of batch operations is improved
e Demo projects for IntraWeb 14 are added

e WAL in the Direct Mode for non-Windows platforms is supported

New Features in LiteDAC 3.2

e Direct Mode in Lazarus is supported
e Lazarus 1.8 and FPC 3.0.4 are supported
e BIT type is supported

© 2024 Enter your company name

SQLite Data Access Components

e Support for custom constraints is added
e The UseBlankValues property for the Loader component is added

¢ The TLiteDataSetOptions.UnknownAsString property that allows mapping fields of unknown
type as ftString instead of ftMemo is added

¢ The TLiteDataSetOptions.AdvancedTypeDetection property that allows describing columns

having data of different types is added

New Features in LiteDAC 3.1

¢ Now the Direct mode is based on the SQLite engine version 3.20.0

e Custom SQL aggregate functions are supported

New Features in LiteDAC 3.0

e RAD Studio 10.2 Tokyo is supported
e Linux in RAD Studio 10.2 Tokyo is supported
e Lazarus 1.6.4 and Free Pascal 3.0.2 is supported

¢ Now the Direct mode is based on the SQLite engine version 3.17.0

New Features in LiteDAC 2.7

e RAD Studio 10.1 Berlin is supported

e Lazarus 1.6 and FPC 3.0.0 is supported

e Support for the BETWEEN statement in TDADataSet.Filter is added
¢ Now the Direct mode is based on the SQLite engine version 3.12.0
e Support for URI filenames is added

e Data Type Mapping performance is improved

¢ Performance of TDALoader on loading data from TDataSet is improved

New Features in LiteDAC 2.6

e RAD Studio 10 Seattle is supported
¢ INSERT, UPDATE and DELETE batch operations are supported

© 2024 Enter your company name

What's New 6

e Now Trial for Win64 is a fully functional Professional Edition
¢ Now at automatic refresh of Detail dataset the OnBeforeOpen event is not called
¢ Now the Direct mode is based on the SQLite engine version 3.8.11.1

¢ The EnableSharedCache option of the Connection component for non-Windows platforms

is added

New Features in LiteDAC 2.5

e RAD Studio XE8 is supported

e AppMethod is supported

e Direct mode for Mac OS X, iOS and Android platforms is supported

e Database encryption for Mac OS X, iOS and Android platforms is supported
¢ Now the Direct mode is based on the SQLite engine version 3.8.9

¢ The TLiteConnection.Options.ConnectMode property is added

¢ The TLiteConnection.ReleaseDatabaseMemory method is added

¢ The TLiteConnection.IsDatabaseReadOnly method is added

e Converter from liteNull data formats to ftExtended is added

New Features in LiteDAC 2.4

e RAD Studio XE7 is supported

e Lazarus 1.2.4 is supported

e Demo projects for FastReport 5 are added

e The TCustomDADataSet.GetKeyFieldNames method is added

¢ The ConstraintColumns metadata kind for the TDAMetadata component is added
¢ Now the Direct mode is based on the SQLite engine version 3.8.6

e TLiteBackup component is added

New Features in LiteDAC 2.3

e RAD Studio XE6 is supported
e Android in C++Builder XE6 is supported

© 2024 Enter your company name

SQLite Data Access Components

e Lazarus 1.2.2 and FPC 2.6.4 is supported

e SmartFetch mode for TDataSet descendants is added

¢ The TLiteDataSetOptions.MasterFieldsNullable property is added

¢ Now the Direct mode is based on the SQLite engine version 3.8.4.3

e The EnableLoadExtension option is added for the Connection component

¢ Now update queries inside TDataSet descendants have correct owner

New Features in LiteDAC 2.2

¢ iOS in C++Builder XE5 is supported

¢ Direct mode for x64 platform is supported

¢ Now the Direct mode is based on the SQLite engine version 3.8.2
¢ RAD Studio XE5 Update 2 is now required

¢ Now .obj and .o files are supplied for C++Builder

e Compatibility of migrating floating-point fields from other components is improved

New Features in LiteDAC 2.1

e RAD Studio XE5 is supported

e Application development for Android is supported

e Lazarus 1.0.12 is supported

¢ Performance is improved

e Automatic checking for new versions is added

¢ Flexible management of conditions in the WHERE clause is added
¢ The possibility to use conditions is added

¢ Now the Direct mode is based on the SQLite engine version 3.8.0.2
¢ The TLiteUserCollation component is added

e Support of the IN keyword in the TDataSet.Filter property is added

e Like operator behaviour when used in the Filter property is now similar to TClientDataSet

* The possibility to use ranges is added

© 2024 Enter your company name

What's New

¢ The Ping method for the Connection component is added

¢ The AllowimplicitConnect option for the Connection component is added

e The SQLRecCount property for the Query and StoredProc components is added
e The ScanParams property for the Script component is added

¢ The RowsAffected property for the Script component is added

¢ The 'True' Boolean value is now saved in the database as 1

e Conversion from the liteText type to all the supported types is added.

New Features in LiteDAC 2.0

e Rad Studio XE4 is supported

e NEXTGEN compiler is supported

¢ Application development for iOS is supported

e FPC 2.6.2 and Lazarus 1.0.8 are supported

e Connection string support is added

¢ Possibility to encrypt entire tables and datasets is added

e Possibility to determine if data in a field is encrypted is added

e Support of TimeStamp, Single and Extended fields in VirtualTable is added

¢ Now the Direct mode is based on the SQLite engine version 3.7.16.2

¢ Now SQLite string data type without length is mapped as ftMemo instead of ftString

e Converter from Unix and Julian date formats to ftDateTime is added

New Features in LiteDAC 1.6

e Rad Studio XE3 Update 1 is now required
e C++Builder 64-bit for Windows is supported
e Lastinsertld property for TLiteSQL and TLiteQuery is added

New Features in LiteDAC 1.5

e Rad Studio XE3 is supported

e Windows 8 is supported

© 2024 Enter your company name

SQLite Data Access Components

2.1

¢ Now the Direct mode is based on the SQLite engine version 3.7.13
e Extended error codes support is added

e Components for FastReport 4.0 are added

New Features in SQLite Data Access Components 1.0.1
¢ First release of LiteDAC

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

General Information

This section contains general information about SQLite Data Access Components

¢ Overview

e Features

e Requirements

e Compatibility

e Using Several DAC Products in One IDE

e Component List

e Hierarchy Chart

e Editions

¢ Licensing and Subscriptions

e Getting Support

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Overview

SQLite Data Access Components (LiteDAC) is a library of components that provides direct
access to SQLite databases from Delphi, C++Builder and Lazarus (FPC). LiteDAC directly
uses SQLite client software to connect to database. LiteDAC is designed to help
programmers develop really lightweight, faster and cleaner SQLite database applications

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

General Information 10

The LiteDAC library is actively developed and supported by the Devart Team. If you have
questions about LiteDAC, email the developers at litedac@devart.com or visit LiteDAC online

at https://www.devart.com/litedac/.

Advantages of LiteDAC Technology

LiteDAC is a direct connectivity database wrapper built specifically for SQLite. LiteDAC offers
wide coverage of the SQLite feature set and emphasizes optimized data access strategies.

Wide Coverage of SQLite Features

By providing access to the most advanced database functionality, LiteDAC allows developers
to harness the full capabilities of SQLite and optimize their database applications. View the full
list of supported SQLite features in Features.

Native Connection Options

LiteDAC provides direct access to SQLite databases without envolving SQLite client software
that heightens its performance. LiteDAC-based database applications are easy to deploy, do
not require installation of other data provider layers (such as BDE), and tend to be faster than
those that use standard data connectivity solutions.

Optimized Code

The goal of LiteDAC is to enable developers to write efficient and flexible database
applications. The LiteDAC library is implemented using advanced data access algorithms and
optimization techniques. Classes and components undergo comprehensive performance
tests and are designed to help you write high-performance, lightweight data access layers.

Compatibility with other Connectivity Methods

The LiteDAC interface retains compatibility with standard VCL data access components, like
BDE.

Development and Support

LiteDAC is a SQLite connectivity solution that is actively developed and supported. LiteDAC
comes with full documentation, demo projects, and fast (usually within two business days)
technical support by the LiteDAC development team. Find out more about getting help or
submitting feedback and suggestions to LiteDAC Development Team in Getting Support.

© 2024 Enter your company name

mailto:litedac@devart.com
https://www.devart.com/litedac/

11

SQLite Data Access Components

A description of the LiteDAC components is provided in the Component List.

Key Features

The following list describes the main features of SQLite Data Access Components.
e Direct access to database data without using client library. Does not require installation of

other data provider layers (such as BDE and ODBC)

e Full support of the latest versions of SQLite

e Support for all SQLite data types
e Disconnected Model with automatic connection control for working with data offline
¢ All types of local sorting and filtering, including by calculated and lookup fields

e Automatic data updating with TLiteQuery and TLiteTable components.

¢ Unicode and national charset support.

e Supports many SQLite-specific features, such as user-defined functions.
¢ Advanced script execution functionality with the TLiteScript component.

e Support for using macros in SQL

e Lets you use Professional Edition of Delphi and C++Builder to develop client/server

applications.

¢ Includes annual LiteDAC Subscription with Priority Support.

e Licensed royalty-free per developer, per team, or per site

The full list of LiteDAC features can be found in Features.

How does LiteDAC work?

LiteDAC connects to SQLite either directly or using the SQLite client software. LiteDAC works
directly through the native SQLite interface, without using BDE or ODBC.

In contrast, the Borland Database Engine (BDE) uses several layers to access SQLite, and
requires additional data access software to be installed on client machines.

© 2024 Enter your company name

General Information 12

2.2

STATIC LINKING

(B
g —
- |
LiteDAC sqlite3.dll
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.
Features

In this topic you will find the complete LiteDAC feature list sorted by categories.

Supported target platforms

* Windows 32-bit and 64-bit
macOS 64-bit

Mac ARM

iOS 64-bit

iOS Simulator ARM 64-bit
e Android 32-bit and 64-bit

e Linux 32-bit (only in Lazarus and Free Pascal) and 64-bit

General usability

e Direct access to database. Does not require installation of other data provider layers (such
as BDE and ODBC)

¢ Interface compatible with standard data access methods, such as BDE and ADO

e \VCL, FMX, LCL development platforms are available

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

13

SQLite Data Access Components

e Separated run-time and GUI specific parts allow you to create pure console applications
such as CGI

e Unicode and national charset support

Network and connectivity

¢ |In Direct mode does not require the SQLite client software (it will be linked in an application

statically) and works with a database directly
e Disconnected Model with automatic connection control for working with data offline

e Local Failover for detecting connection loss and implicitly reexecuting certain operations

Compatibility

¢ Full support of the latest versions of SQLite

¢ Direct mode support for Windows x32 and x64, MacOS, iOS and Android
e Support for all SQLite data types

e Support for Unix and Julian date and time formats

e Compatible with all IDE versions starting with Delphi 6, C++Builder 6, except Delphi 8, and

with Free Pascal
¢ Includes provider for UniDAC Express Edition

¢ Wide reporting component support, including support for InfoPower, ReportBuilder,

FastReport
e Support of all standard and third-party visual data-aware controls

¢ Allows you to use Professional Edition of Delphi and C++Builder to develop client/server

applications

SQLite technology support

e SQLite database encryption in Direct mode using different encryption algorithms

e Data Type Mapping

e Support for automatic database creation on connect

e Support for Shared-Cache mode

© 2024 Enter your company name

http://blog.devart.com/data-type-mapping-in-delphi-data-access-components.html

General Information 14

e Support for SQLite user-defined functions

e Support for SQLite user-defined collations

e Support for SQLite extensions loading

e Support for SQLite R*Tree module

e Support for SQLite FTS3 and FTS4 extensions

e Support for autoincrement fields

e Support for multi-SQL statements executing

¢ Fast record insertion with the TLiteLoader component

e Support for database backup using SQLite Online Backup API with the TLiteBackup

component

Performance

¢ High overall performance

¢ Fast controlled fetch of large data blocks

e Optimized string data storing

¢ Advanced connection pooling

¢ High performance of applying cached updates with batches
e Caching of calculated and lookup fields

¢ Fast Locate in a sorted DataSet

e Preparing of user-defined update statements

Local data storage operations

e Database-independent data storage with TVirtualTable component
e CachedUpdates operation mode

¢ | ocal sorting and filtering, including by calculated and lookup fields
¢ | ocal master/detail relationship

¢ Master/detail relationship in CachedUpdates mode

Data access and data management automation

© 2024 Enter your company name

15

SQLite Data Access Components

¢ Automatic data updating with TLiteQuery and TLiteTable components
e Automatic record refreshing
e Automatic query preparing

e Support for ftWideMemo field type in Delphi 2006 and higher

Extended data access functionality

e Data Encryption in a client application

e Separate component for executing SQL statements

¢ Simplified access to table data with TLiteTable component

¢ Ability to retrieve metadata information with TLiteMetaData component
e Support for using macros in SQL

e FmtBCD fields support

¢ Ability to customize update commands by attaching external components to

TLiteUpdateSQL objects
e Automatic retrieval of default field values
¢ Deferred detail DataSet refresh in master/detail relationships

¢ LiteDataAdapter component for WinForms and ASP.NET applications

Data exchange
¢ Transferring data between all types of TDataSet descendants with TCRBatchMove

component
¢ Data export and import to/from XML (ADO format)
¢ Ability to synchronize positions in different DataSets

¢ Extended data management with TLiteDump components

Script execution

e Advanced script execution features with TLiteScript component
e Support for executing individual statements in scripts

e Support for executing huge scripts stored in files with dynamic loading

© 2024 Enter your company name

General Information 16

SQL execution monitoring
e Extended SQL tracing capabilities provided by TLiteSQLMonitor component and dbMonitor

e Borland SQL Monitor support
¢ Ability to send messages to dbMonitor from any point in your program

e Ability to retrieve information about the last query execution

Visual extensions

¢ Includes source code of enhanced TCRDBGrid data-aware grid control
e Customizable connection dialog

e Cursor changes during non-blocking execution

Design-time enhancements

e DataSet Manager tool to control DataSet instances in the project

¢ Advanced design-time component and property editors

e Automatic design-time component linking

e More convenient data source setup with the TLiteDataSource component

e Syntax highlighting in design-time editors

Resources:
e Code documentation and guides in the CHM, PDF, and HXS formats

e Many helpful demo projects

Licensing and support
¢ Included annual LiteDAC Subscription with Priority Support

e Licensed royalty-free per developer, per team, or per site

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

17 SQLite Data Access Components

2.3 Requirements
LiteDAC supports two different ways of work with SQLite databases. When the
TLiteConnection.Options.Direct property is set to False, an application based on LiteDAC
requires the SQLite client library. LiteDAC dynamically loads SQLite client DLL (sqlite3.dll)
available on user systems. To locate DLL you can set the TIBCConnection.ClientLibrary
property with the path to the client library. By default LiteDAC searches client DLL (sqlite3.dll)
in directories specified in the PATH environment variable. When the
TLiteConnection.Options.Direct property is set to True, then no additional files for the
application are needed.
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

24 Compatibility

IDE Compatibility
LiteDAC is compatible with the following IDEs:

Embarcadero RAD Studio 12.1 Athens
e Embarcadero Delphi 12.1 Athens for Windows

e Embarcadero Delphi 12.1 Athens for macOS

Embarcadero Delphi 12.1 Athens for Linux

Embarcadero Delphi 12.1 Athens for iOS

Embarcadero Delphi 12.1 Athens for Android

Embarcadero C++Builder 12.1 Athens for Windows

Embarcadero C++Builder 12.1 Athens for iOS
e Embarcadero C++Builder 12.1 Athens for Android

Embarcadero RAD Studio 12 Athens
e Embarcadero Delphi 12 Athens for Windows

e Embarcadero Delphi 12 Athens for macOS
e Embarcadero Delphi 12 Athens for Linux

e Embarcadero Delphi 12 Athens for iOS

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

General Information

e Embarcadero Delphi 12 Athens for Android

e Embarcadero C++Builder 12 Athens for Windows
e Embarcadero C++Builder 12 Athens for iOS

e Embarcadero C++Builder 12 Athens for Android

Embarcadero RAD Studio 11.1 Alexandria
e Embarcadero Delphi 11.1 Alexandria for Windows

e Embarcadero Delphi 11.1 Alexandria for macOS

e Embarcadero Delphi 11.1 Alexandria for Linux

e Embarcadero Delphi 11.1 Alexandria for iOS

e Embarcadero Delphi 11.1 Alexandria for Android

e Embarcadero C++Builder 11.1 Alexandria for Windows
e Embarcadero C++Builder 11.1 Alexandria for iOS

e Embarcadero C++Builder 11.1 Alexandria for Android

Embarcadero RAD Studio 10.4 Sydney (Requires Release 1 or Release 2)
e Embarcadero Delphi 10.4 Sydney for Windows

e Embarcadero Delphi 10.4 Sydney for macOS
e Embarcadero Delphi 10.4 Sydney for Linux
e Embarcadero Delphi 10.4 Sydney for iOS

Embarcadero Delphi 10.4 Sydney for Android

Embarcadero C++Builder 10.4 Sydney for Windows

Embarcadero C++Builder 10.4 Sydney for iOS

Embarcadero C++Builder 10.4 Sydney for Android

Embarcadero RAD Studio 10.3 Rio (Requires Release 2 or Release 3)
e Embarcadero Delphi 10.3 Rio for Windows

e Embarcadero Delphi 10.3 Rio for macOS
e Embarcadero Delphi 10.3 Rio for Linux

e Embarcadero Delphi 10.3 Rio for iOS

e Embarcadero Delphi 10.3 Rio for Android

© 2024 Enter your company name

https://cc.embarcadero.com/item/30883
https://cc.embarcadero.com/Item/30896

19

SQLite Data Access Components

e Embarcadero C++Builder 10.3 Rio for Windows
e Embarcadero C++Builder 10.3 Rio for macOS
e Embarcadero C++Builder 10.3 Rio for iOS

e Embarcadero C++Builder 10.3 Rio for Android

Embarcadero RAD Studio 10.2 Tokyo (Incompatible with Release 1)

e Embarcadero Delphi 10.2 Tokyo for Windows

e Embarcadero Delphi 10.2 Tokyo for macOS

e Embarcadero Delphi 10.2 Tokyo for Linux

e Embarcadero Delphi 10.2 Tokyo for iOS

e Embarcadero Delphi 10.2 Tokyo for Android

e Embarcadero C++Builder 10.2 Tokyo for Windows
e Embarcadero C++Builder 10.2 Tokyo for macOS
e Embarcadero C++Builder 10.2 Tokyo for iOS

e Embarcadero C++Builder 10.2 Tokyo for Android

Embarcadero RAD Studio 10.1 Berlin
e Embarcadero Delphi 10.1 Berlin for Windows

e Embarcadero Delphi 10.1 Berlin for macOS
e Embarcadero Delphi 10.1 Berlin for iOS

Embarcadero Delphi 10.1 Berlin for Android

Embarcadero C++Builder 10.1 Berlin for Windows

Embarcadero C++Builder 10.1 Berlin for macOS

Embarcadero C++Builder 10.1 Berlin for iOS

Embarcadero C++Builder 10.1 Berlin for Android

Embarcadero RAD Studio 10 Seattle
e Embarcadero Delphi 10 Seattle for Windows

e Embarcadero Delphi 10 Seattle for macOS
e Embarcadero Delphi 10 Seattle for iOS
e Embarcadero Delphi 10 Seattle for Android

© 2024 Enter your company name

General Information

e Embarcadero C++Builder 10 Seattle for Windows
e Embarcadero C++Builder 10 Seattle for macOS
e Embarcadero C++Builder 10 Seattle for iOS

e Embarcadero C++Builder 10 Seattle for Android

Embarcadero RAD Studio XE8
e Embarcadero Delphi XE8 for Windows

e Embarcadero Delphi XE8 for macOS

e Embarcadero Delphi XES8 for iOS

e Embarcadero Delphi XE8 for Android

e Embarcadero C++Builder XE8 for Windows
e Embarcadero C++Builder XE8 for macOS
e Embarcadero C++Builder XE8 for iOS

e Embarcadero C++Builder XE8 for Android

Embarcadero RAD Studio XE7
e Embarcadero Delphi XE7 for Windows

e Embarcadero Delphi XE7 for macOS
e Embarcadero Delphi XE7 for iOS
e Embarcadero Delphi XE7 for Android

Embarcadero C++Builder XE7 for Windows

Embarcadero C++Builder XE7 for macOS

Embarcadero C++Builder XE7 for iOS

Embarcadero C++Builder XE7 for Android

Embarcadero RAD Studio XE6
e Embarcadero Delphi XE6 for Windows

e Embarcadero Delphi XE6 for macOS
e Embarcadero Delphi XEG6 for iOS
e Embarcadero Delphi XE6 for Android

e Embarcadero C++Builder XE6 for Windows

© 2024 Enter your company name

21

SQLite Data Access Components

e Embarcadero C++Builder XE6 for macOS
e Embarcadero C++Builder XEG6 for iOS
e Embarcadero C++Builder XE6 for Android

Embarcadero RAD Studio XE5S (Requires Update 2)
e Embarcadero Delphi XE5 for Windows

Embarcadero Delphi XE5 for macOS

Embarcadero Delphi XE5 for iOS

Embarcadero Delphi XES for Android

Embarcadero C++Builder XE5 for Windows
e Embarcadero C++Builder XE5 for macOS
e Embarcadero C++Builder XE5 for iOS

Embarcadero RAD Studio XE4
e Embarcadero Delphi XE4 for Windows

e Embarcadero Delphi XE4 for macOS

e Embarcadero Delphi XE4 for iOS

e Embarcadero C++Builder XE4 for Windows
e Embarcadero C++Builder XE4 for macOS

Embarcadero RAD Studio XE3 (Requires Update 2)
e Embarcadero Delphi XE3 for Windows

e Embarcadero Delphi XE3 for macOS
e Embarcadero C++Builder XE3 for Windows
e Embarcadero C++Builder XE3 for macOS

Embarcadero RAD Studio XE2 (Requires Update 4 Hotfix 1)
e Embarcadero Delphi XE2 for Windows

e Embarcadero Delphi XE2 for macOS
e Embarcadero C++Builder XE2 for Windows
e Embarcadero C++Builder XE2 for macOS

Embarcadero RAD Studio XE
e Embarcadero Delphi XE

© 2024 Enter your company name

http://cc.embarcadero.com/item/29662
http://cc.embarcadero.com/item/29294
http://edn.embarcadero.com/article/42282

General Information 22

e Embarcadero C++Builder XE

Embarcadero RAD Studio 2010
e Embarcadero Delphi 2010

e Embarcadero C++Builder 2010

CodeGear RAD Studio 2009 (Requires Update 3)
e CodeGear Delphi 2009

e CodeGear C++Builder 2009

CodeGear RAD Studio 2007
e CodeGear Delphi 2007

e CodeGear C++Builder 2007

Borland Developer Studio 2006
¢ Borland Delphi 2006

e Borland C++Builder 2006

Borland Delphi 7

Borland Delphi 6 (Requires Update Pack 2 — Delphi 6 Build 6.240)

Borland C++Builder 6 (Requires Update Pack 4 — C++Builder 6 Build 10.166)
Lazarus.3.2.0.and.Eree Pascal.3.2.2 for. Windows,.macOS,.and.Linux.

All the existing Delphi and C++Builder editions are supported: Architect, Enterprise,

Professional, Community, and Starter.

Lazarus and Free Pascal are supported only in Trial Edition and Professional Edition with

source code.

Supported Target Platforms
¢ Windows 32-bit and 64-bit

macOS 64-bit and ARM (Apple Silicon M1)

Linux 32-bit (only in Lazarus and Free Pascal) and 64-bit

iOS 64-bit

iOS Simulator ARM 64-bit
¢ Android 32-bit and 64-bit

Support for Windows 64-bit is available since RAD Studio XE2. Support for iOS 64-bit is

© 2024 Enter your company name

http://cc.embarcadero.com/item/26921
http://edn.embarcadero.com/article/29791
http://edn.embarcadero.com/article/29793
http://www.lazarus.freepascal.org/
http://www.freepascal.org/

23

SQLite Data Access Components

2.5

available since RAD Studio XE8. Support for Android 32-bit is available since RAD Studio
XES5. Support for Linux 64-bit is available since RAD Studio 10.2 Tokyo. Support for macOS
64-bit is available since RAD Studio 10.3 Rio. Support for Android 64-bit is available since
RAD Studio 10.3.3 Rio.

Supported GUI Frameworks
¢ FireMonkey (FMX)

e Visual Component Library (VCL)
e Lazarus Component Library (LCL)

Devart Data Access Components Compatibility

All DAC products are compatible with each other.

But, to install several DAC products to the same IDE, it is necessary to make sure that all
DAC products have the same common engine (BPL files) version. The latest versions of
DAC products or versions with the same release date always have the same version of the
common engine and can be installed to the same IDE.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Using Several DAC Products in One IDE

UniDAC, ODAC, SDAC, MyDAC, IBDAC, PgDAC, LiteDAC and VirtualDAC components use
common base packages listed below:

Packages:

e dacXX.bpl

e dacvcIXX.bpl
e dcldacXX.bpl

Note that product compatibility is provided for the current build only. In other words, if you
upgrade one of the installed products, it may conflict with older builds of other products. In
order to continue using the products simultaneously, you should upgrade all of them at the

same time.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

General Information 24

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

2.6 ComponentList

This topic presents a brief description of the components included in the SQLite Data Access
Components library. Click on the name of each component for more information. These
components are added to the LiteDAC page of the Component palette except for
TCRBatchMove and TVirtualTable components. TCRBatchMove and TVirtualTable
components are added to the Data Access page of the Component palette. Basic LiteDAC

components are included in all LiteDAC editions. LiteDAC Professional Edition components
are not included in LiteDAC Standard Edition.

Basic LiteDAC components

f ‘5- TLiteConnection |Represents an open connection to a SQLite database.

Lite

Executes queries and Operates record sets. It also provides

2 TLiteQue flexible way to update data.

Eite-

L”E' TLiteSQL Executes SQL statements, which do not return rowsets.

= [TLiteTable Lets you retrieve and update data in a single table without writing
Litge |—— SQL statements.

+ TLiteUpdateSQL |Lets you tune update operations for the DataSet component.
B Y pdate op P
= TLiteDataSource Provides an interface between LiteDAC dataset components
Lite and data-aware controls on a form.
= TLiteScript Executes sequences of SQL statements.
¥ TLiteSQLMonitor Interface for monitoring dynamic SQL execution in LiteDAC-
Lite based applications.

— TLiteConnectDial Used to build custom prompts for the database name and
e |0g encryption key.

, Dataset that stores data in memory. This component is placed

s (LVirtualTable on the Data Access page of the Component palette.

Rﬁ TVirtualDataSet |Dataset that processes arbitrary non-tabular data.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

25 SQLite Data Access Components
LiteDAC Professional Edition components

L"T;Z ItheUserCoIIatlo Provides functionality for working with user-defined collations
= |TLiteUserFunctio |Provides functionality to define custom functions for future use in
weld |y SQL-statements
i | TLiteLoader Provides quick loading of external data into the database

w |71 Serves to store a database or its parts as a script and also to
2o (TLiteDum restore database from received script.
JI: TLiteBackup Implements SQLite Online Backup APIfunctionality
L—-';'% TLiteMetaData |Retrieves metadata on specified SQL object.
Li—-';;‘j TLiteEncryptor Represents data encryption and decryption in client application.
.:_: = [TCRBatchMove |Retrieves metadata on database objects from the server.
See Also
e Hierarchy chart
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

2.7 Hierarchy Chart

Many LiteDAC classes are inherited from standard VCL/LCL classes. The inheritance
hierarchy chart for LiteDAC is shown below. The LiteDAC classes are represented by
hyperlinks that point to their description in this documentation. A description of the standard
classes can be found in the documentation of your IDE.

TObject

TPersistent

TComponent

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

General Information

TCustomConnection

TCustomDAConnection

TLiteConnection

TDataSet
TMemDataSet

TCustomDADataSet

TCustomLiteDataSet

TLiteQuery

TCustomLiteTable

TLiteTable

TDAMetaData

TLiteMetaData

TVirtualTable

TDataSource

TCRDataSource

TLiteDataSource

TCRBatchMove

TCustomConnectDialog

TLiteConnectDialog

TCustomLiteUserFunction

TLiteUserFunction

TCustomDASQL

TLiteSQL

TCustomDASQLMonitor

TLiteSQLMonitor

TDALoader

TLiteLoader

TDAScript
TLiteScript

TDADump
TLiteDump

TCREncryptor

TLiteEncryptor

26

© 2024 Enter your company name

27

SQLite Data Access Components

2.8

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Editions

SQLite Data Access Components comes in two editions: Standard and Professional.

The Standard edition includes the LiteDAC basic connectivity components. LiteDAC

Standard Edition is a cost-effective solution for database application developers who are
looking for high-performance connectivity to SQLite for secure, reliable, and high-speed data
transmission.

The Professional edition shows off the full power of LiteDAC, enhancing LiteDAC Standard
Edition with support for SQLite-specific functionality, such as access to SQLite in the Direct
mode using static linking of the SQLite library in an application, database encryption, and
advanced dataset management features.

You can get Source Access to LiteDAC Professional Edition by purchasing a special

LiteDAC Professional Edition with Source Code, which includes the source code of all
component classes. The source code of DataSet Manager is not distributed. The source
code of the Direct mode for SQLite is distributed as precompiled packages.

The matrix below compares the features of LiteDAC editions. See Features for the detailed
list of LiteDAC features.

LiteDAC Edition Matrix

Feature Standard Professional
Direct Mode

Direct access to SQLite by static linking of the SQLite v,
library

Desktop Application Development

Windows v v
macOS v
Linux v

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

General Information

Mobile Application Development

i0OS
Android
Database Encryption

SQLite database encryption in Direct mode

Data Access Components

Base Components:
TLiteConnection
TLiteQuery
TLiteSQL
TLiteTable
TLiteUpdateSQL
TLiteDataSource
Script executing
TLiteScript

Fast data loading into the server
TLiteLoader

SQLite Specific Components

Working with user-defined collations
TLiteUserCollation

Declaration and execution of user-defined functions
TLiteUserFunction

Obtaining metadata about database objects
TLiteMetaData

Storing a database as a script
TLiteDump

Implements SQLite Online Backup API functionality
TLiteBackup

DataBase Activity Monitoring

Monitoring of per-component SQL execution
TLiteSQLMonitor

Additional components

Advanced connection dialog
TLiteConnectDialog

CIS SIS]S <

<

28

© 2024 Enter your company name

29

SQLite Data Access Components

29

Data encryption and decryption
TLiteEncryptor

Data storing in memory table v
TVirtualTable

Dataset that wraps arbitrary non-tabular data W,
TVirtualDataSet

Advanced DBGrid with extended functionality

TCRDBGrid

Records transferring between datasets

TCRBatchMove

Design-Time Features

CIS]SS S

<

Enhanced component and property editors v

<

DataSet Manager
Cross IDE Support

Lazarus and Free Pascal Support

1 Available only in Professional Edition with Source Code.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Licensing

PLEASE READ THIS LICENSE AGREEMENT CAREFULLY. BY INSTALLING OR USING
THIS SOFTWARE, YOU INDICATE ACCEPTANCE OF AND AGREE TO BECOME BOUND
BY THE TERMS AND CONDITIONS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE
TERMS OF THIS LICENSE, DO NOT INSTALL OR USE THIS SOFTWARE AND
PROMPTLY RETURN IT TO DEVART.

INTRODUCTION

This Devart end-user license agreement ("Agreement”) is a legal agreement between you
(either an individual person or a single legal entity) and Devart, for the use of LiteDAC
software application, source code, demos, intermediate files, printed materials, and online or
electronic documentation contained in this installation file. For the purpose of this Agreement,

© 2024 Enter your company name

http://devart.com/crgrid/
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

General Information 30

the software program(s) and supporting documentation will be referred to as the "Software".

LICENSE
1. GRANT OF LICENSE

The enclosed Software is licensed, not sold. You have the following rights and privileges,
subject to all limitations, restrictions, and policies specified in this Agreement.

1.1. If you are a legally licensed user, depending on the license type specified in the
registration letter you have received from Devart upon purchase of the Software, you are
entitled to either:

¢ install and use the Software on one or more computers, provided it is used by 1 (one) for
the sole purposes of developing, testing, and deploying applications in accordance with this
Agreement (the "Single Developer License"); or

e install and use the Software on one or more computers, provided it is used by up to 4 (four)
developers within a single company at one physical address for the sole purposes of
developing, testing, and deploying applications in accordance with this Agreement (the
"Team Developer License"); or

¢ install and use the Software on one or more computers, provided it is used by developers in
a single company at one physical address for the sole purposes of developing, testing, and

deploying applications in accordance with this Agreement (the "Site License").

1.2. If you are a legally licensed user of the Software, you are also entitled to:

e make one copy of the Software for archival purposes only, or copy the Software onto the
hard disk of your computer and retain the original for archival purposes;

¢ develop and test applications with the Software, subject to the Limitations below;

e create libraries, components, and frameworks derived from the Software for personal use
only;

¢ deploy and register run-time libraries and packages of the Software, subject to the

Redistribution policy defined below.

1.3. You are allowed to use evaluation versions of the Software as specified in the Evaluation
section.

© 2024 Enter your company name

31

SQLite Data Access Components

No other rights or privileges are granted in this Agreement.

2. LIMITATIONS

Only legally registered users are licensed to use the Software, subject to all of the conditions
of this Agreement. Usage of the Software is subject to the following restrictions.

2.1. You may not reverse engineer, decompile, or disassemble the Software.

2.2. You may not build any other components through inheritance for public distribution or
commercial sale.

2.3. You may not use any part of the source code of the Software (original or modified) to
build any other components for public distribution or commercial sale.

2.4. You may not reproduce or distribute any Software documentation without express written
permission from Devart.

2.5. You may not distribute and sell any portion of the Software without integrating it into your
Applications as Executable Code, except a Trial version that can be distributed for free as
original Devart's LiteDAC Trial package.

2.6. You may not transfer, assign, or modify the Software in whole or in part. In particular, the
Software license is non-transferable, and you may not transfer the Software installation
package.

2.7. You may not remove or alter any Devart's copyright, trademark, or other proprietary rights
notice contained in any portion of Devart units, source code, or other files that bear such a
notice.

3. REDISTRIBUTION

The license grants you a non-exclusive right to compile, reproduce, and distribute any new
software programs created using LiteDAC. You can distribute LiteDAC only in compiled
Executable Programs or Dynamic-Link Libraries with required run-time libraries and
packages.

All Devart's units, source code, and other files remain Devart's exclusive property.

4. TRANSFER

You may not transfer the Software to any individual or entity without express written

© 2024 Enter your company name

General Information 32

permission from Devart. In particular, you may not share copies of the Software under “Single
Developer License” and “Team License” with other co-developers without obtaining proper
license of these copies for each individual.

5. TERMINATION

Devart may immediately terminate this Agreement without notice or judicial resolution in the
event of any failure to comply with any provision of this Agreement. Upon such termination
you must destroy the Software, all accompanying written materials, and all copies.

6. EVALUATION

Devart may provide evaluation ("Trial") versions of the Software. You may transfer or
distribute Trial versions of the Software as an original installation package only. If the Software
you have obtained is marked as a "Trial" version, you may install and use the Software for a
period of up to 60 calendar days from the date of installation (the "Trial Period"), subject to the
additional restriction that it is used solely for evaluation of the Software and not in conjunction
with the development or deployment of any application in production. You may not use
applications developed using Trial versions of the Software for any commercial purposes.
Upon expiration of the Trial Period, the Software must be uninstalled, all its copies and all
accompanying written materials must be destroyed.

7. WARRANTY

The Software and documentation are provided "AS IS" without warranty of any kind. Devart
makes no warranties, expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose or use.

8. SUBSCRIPTION AND SUPPORT

The Software is sold on a subscription basis. The Software subscription entitles you to
download improvements and enhancement from Devart’'s web site as they become available,
during the active subscription period. The initial subscription period is one year from the date
of purchase of the license. The subscription is automatically activated upon purchase, and
may be subsequently renewed by Devart, subject to receipt applicable fees. Licensed users
of the Software with an active subscription may request technical assistance with using the
Software over email from the Software development. Devart shall use its reasonable
endeavours to answer queries raised, but does not guarantee that your queries or problems

© 2024 Enter your company name

33

SQLite Data Access Components

2.10

will be fixed or solved.

Devart reserves the right to cease offering and providing support for legacy IDE versions.

9. COPYRIGHT

The Software is confidential and proprietary copyrighted work of Devart and is protected by
international copyright laws and treaty provisions. You may not remove the copyright notice
from any copy of the Software or any copy of the written materials, accompanying the
Software.

This Agreement contains the total agreement between the two parties and supersedes any
other agreements, written, oral, expressed, or implied.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Getting Support

This page lists several ways you can find help with using LiteDAC and describes the LiteDAC
Priority Support program.

Support Options

There are a number of resources for finding help on installing and using LiteDAC.
¢ You can find out more about LiteDAC installation or licensing by consulting the Licensing

and FAQ sections.

¢ You can get community assistance and technical support on the LiteDAC Community

Forum.

* You can get advanced technical assistance by LiteDAC developers through the LiteDAC

Priority Support program.

If you have a question about ordering LiteDAC or any other Devart product, please contact
sales@devart.com.

LiteDAC Priority Support

LiteDAC Priority Support is an advanced product support service for getting expedited

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://support.devart.com/portal/en/community
https://support.devart.com/portal/en/community
mailto:sales@devart.com

General Information 34

2.1

individual assistance with LiteDAC-related questions from the LiteDAC developers
themselves. Priority Support is carried out over email and has two business days response
policy. Priority Support is available for users with an active LiteDAC Subscription.

To get help through the LiteDAC Priority Support program, please send an email to
support@devart.com describing the problem you are having. Make sure to include the

following information in your message:

¢ The version of Delphi, C++Builder you are using.

e Your LiteDAC Registration number.

e Full LiteDAC edition name and version number. You can find both of these from the
LiteDAC | LiteDAC About menu in the IDE.

¢ Versions of the SQLite and client you are using.

e A detailed problem description.

e [f possible, a small test project that reproduces the problem. Please include definitions for

all and avoid using third-party components.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Frequently Asked Questions

This page contains a list of Frequently Asked Questions for SQLite Data Access
Components.

If you have encounter a question with using LiteDAC, please browse through this list first. If
this page does not answer your question, refer to the Getting Support topic in LiteDAC help

Installation and Deployment
1. 1 am having a problem installing LiteDAC or compiling LiteDAC-based projects...

You may be having a compatibility issue that shows up in one or more of the following forms:
e Get a "Setup has detected already installed DAC packages which are incompatible with

current version" message during LiteDAC installation.

e Get a "Procedure entry point ... not found in ... " message when starting IDE.

© 2024 Enter your company name

mailto:support@devart.com
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

35

SQLite Data Access Components

e Get a "Unit ... was compiled with a different version of ..." message on compilation.

You can have such problems if you installed incompatible LiteDAC, IBDAC, SDAC, ODAC,
PgDAC or MyDAC versions. All these products use common base packages. The easiest
way to avoid the problem is to uninstall all installed DAC products and then download from our
site and install the last builds.

2. What software should be installed on a client computer for LiteDAC-based

applications to work?

The minimal configuration of client installation includes the following:

e Copy the SQLite client library file sqlite3.dll to the folder available for executable unit of
your program. For example, to the folder with your executable file, or to the Windows
system folder. For more information, see description of the LoadLibrary function and the
environment variable PATH.

Licensing and Subscriptions

1. Am| entitled to distribute applications written with LiteDAC?

If you have purchased a full version of LiteDAC, you are entitled to distribute pre-compiled
programs created with its use. You are not entitled to propagate any components inherited
from LiteDAC or using LiteDAC source code. For more information see the License.rtf file in
your LiteDAC installation directory.

2. Can | create components using LiteDAC?

You can create your own components that are inherited from LiteDAC or that use the LiteDAC
source code. You are entitled to sell and distribute compiled application executables that use
such components, but not their source code and not the components themselves.

3.1 have aregistered version of LiteDAC. Will | need to pay to upgrade to future

versions?

All upgrades to future versions are free to users with an active LiteDAC Subscription.

4. What are the benefits of the LiteDAC Subscription Program?

The LiteDAC Subscription Program is an annual maintenance and support service for
LiteDAC users.

© 2024 Enter your company name

General Information 36

Users with a valid LiteDAC Subscription get the following benefits:

e Access to new versions of LiteDAC when they are released
e Access to all LiteDAC updates and bug fixes
e Product support through the LiteDAC Priority Support program
¢ Notification of new product versions
Priority Support is an advanced product support program which offers you expedited

individual assistance with LiteDAC-related questions from the LiteDAC developers
themselves. Priority Support is carried out over email and has a two business day response

policy.

The LiteDAC Subscription Program is available for registered users of LiteDAC.
5. Can | use my version of LiteDAC after my Subscription expires?

Yes, you can. LiteDAC version licenses are perpetual.

6.l want a LiteDAC Subscription! How can | get one?

An annual LiteDAC Subscription is included when ordering or upgrading to any registered
(non-Trial) edition of LiteDAC.

You can renew your LiteDAC Subscription on the LiteDAC Ordering Page. For more

information, please contact sales@devart.com.

How To
1. How can | determine which version of LiteDAC | am using?

You can determine your LiteDAC version number in several ways:

e During installation of LiteDAC, consult the LiteDAC Installer screen.
¢ After installation, see the history.html file in your LiteDAC installation directiory.
¢ At design-time, select LiteDAC | About LiteDAC from the main menu of your IDE.

2. How can | execute a query saved in the SQLInsert, SQLUpdate, SQLDelete, or
SQLRefresh properties of a LiteDAC dataset?

The values of these properties are templates for query statements, and they cannot be
manually executed. Usually there is no need to fill these properties because the text of the

© 2024 Enter your company name

https://www.devart.com/litedac/ordering.html
mailto:sales@devart.com

37

SQLite Data Access Components

query is generated automatically.

In special cases, you can set these properties to perform more complicated processing
during a query. These properties are automatically processed by LiteDAC during the
execution of the Post, Delete, or RefreshRecord methods, and are used to construct the
query to the server. Their values can contain parameters with names of fields in the
underlying data source, which will be later replaced by appropriate data values.

For example, you can use the SQLInsert template to insert a row into a query instance as
follows.

¢ Fill the SQLInsert property with the parametrized query template you want to use.
e Call Insert.
¢ |nitialize field values of the row to insert.

e Call Post.

The value of the SQLInsert property will then be used by LiteDAC to perform the last step.

Setting these properties is optional and allows you to automatically execute additional SQL
statements, add calls to stored procedures and functions, check input parameters, and/or
store comments during query execution. If these properties are not set, the LiteDAC dataset
object will generate the query itself using the appropriate insert, update, delete, or refresh
record syntax.

3. Some questions about the visual part of LiteDAC

The following questions usually arise from the same problem:
¢ | set the Debug property to True but nothing happens!
¢ While executing a query, the screen cursor does not change to an hour-glass.
e Even if | have LoginPromp set to True, the connect dialog does not appear.
To fix this problem, you should add the LiteDacVcl unit to the uses clause of your project.

General Questions
1. 1 would like to develop an application that works with SQL.ite databases. Which

should | use - LiteDAC or dbExpress?

dbExpress technology serves for providing a more or less uniform way to access different
servers (SQL Server, MySQL, Oracle and so on). It is based on drivers that include server-

© 2024 Enter your company name

General Information 38

specific features. Like any universal tool, in many specialized cases dbExpress providers
lose some functionality. For example, the dbExpress design-time is quite poor and cannot be
expanded.

LiteDAC is a specialized set of components to access SQLite databases with advanced
design-time and component interface similar to BDE.

We tried to implement maximal SQLite support in LiteDAC. dbExpress technology puts
severe restrictions. For example, Unicode fields cannot be passed from the driver to
dbExpress.

In some cases dbExpress is slower because data undergoes additional conversion to
correspond to dbExpress standards.

To summarise, if it is important for you to be able to quickly adapt your application to a
database server other than InterBase, it is probably better to use dbExpress. In other cases,
especially when migrating from BDE or ADO, you should use LiteDAC.

2. When editing a DataSet, | get an exception with the message 'Update failed. Found

%d records.' or 'Refresh failed. Found %d records.’

This error occurs when the database is unable to determine which record to modify or delete.
In other words, there are either more than one record or no records that suit the UPDATE
criteria. Such situation can happen when you omit the unique field in a SELECT statement
(TCustomDADataSet.SQL) or when another user modifies the table simultaneously. This
exception can be suppressed. Refer to TCustomDADataSet.Options topic in LiteDAC help for
more information.

3. I cannot use INT64 fields as key fields in master-detail relationship.

Fields of this type are represented in Delphi by TLargelntField objects. In some versions of
Delphi, you cannot access these fields through the Value property (see the protected method
TLargeintField.SetVarValue in the DB unit for details). To avoid this problem, you can change
the field type to INTEGER, which is usually sufficient for key fields. Alternatively, you can avoid
using Value.

4. Can LiteDAC and BDE functions be used side-by-side in a single application?

Yes. There is no problem with using both LiteDAC and BDE functions in the same application.

© 2024 Enter your company name

39

SQLite Data Access Components

© 1997-2012 Devart. All rights reserved.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Getting Started

This page contains a quick introduction to setting up and using the SQLite Data Access
Components library. It gives a walkthrough for each part of the LiteDAC usage process and
points out the most relevant related topics in the documentation.

e What is LiteDAC?

e |nstalling LiteDAC.

¢ \Working with the LiteDAC demo projects.

e Compiling and deploying your LiteDAC project.

¢ Using the LiteDAC documentation.

e How to get help with LiteDAC.

What is LiteDAC?

SQLite Data Access Components (LiteDAC) is a component library which provides direct
connectivity to SQLite for Delphi, C++Builder and Lazarus (FPC), and helps you develop fast
SQLite-based database applications with these environments.

Many LiteDAC classes are based on VCL, LCL and FMX classes and interfaces. LiteDAC is a
replacement for the Borland Database Engine, it provides native database connectivity, and is

specifically designed as an interface to the SQLite database.
An introduction to LiteDAC is provided in the Overview section.
Alist of the LiteDAC features you may find useful is listed in the Features section.

An overview of the LiteDAC component classes is provided in the Components List section.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.microfocus.com/en-us/products/borland/overview

Getting Started 40

Installing LiteDAC

To install LiteDAC, complete the following steps.
1. Choose and download the version of the LiteDAC installation program that is compatible
with your IDE. For instance, if you are installing LiteDAC 1.00, you should use the following

files:

For BDS 2006 and Turbo - litedac100d10*.exe
For Delphi 7 - litedac100d7*.exe

For more information, visit the LiteDAC download page.

2. Close all running Borland applications.
3. Launch the LiteDAC installation program you downloaded in the first step and follow the

instructions to install LiteDAC.

By default, the LiteDAC installation program should install compiled LiteDAC libraries
automatically on all IDEs.

To check if LiteDAC has been installed properly, launch your IDE and make sure that the
LiteDAC page has been added to the Component palette and that a LiteDAC menu was
added to the Menu bar.

If you have bought LiteDAC Professional Edition with Source Code, you will be able to
download both the compiled version of LiteDAC and the LiteDAC source code. The
installation process for the compiled version is standard, as described above.The LiteDAC
source code must be compiled and installed manually. Consult the supplied ReadmeSrc.html
file for more details.

To find out what gets installed with LiteDAC or to troubleshoot your LiteDAC installation, visit
the Installation topic.

Working with the LiteDAC demo projects

The LiteDAC installation package includes a number of demo projects that demonstrate
LiteDAC capabilities and use patterns. The LiteDAC demo projects are automatically installed
in the LiteDAC installation folder.

To quickly get started working with LiteDAC, launch and explore the introductory LiteDAC

© 2024 Enter your company name

https://www.devart.com/litedac/download.html

4

SQLite Data Access Components

demo project, LiteDACDemo, from your IDE. This demo project is a collection of demos that
show how LiteDAC can be used. The project creates a form which contains an explorer panel
for browsing the included demos and a view panel for launching and viewing the selected
demo.

LiteDACDemo Walkthrough
1. Launch your IDE.

2. Choose File | Open Project from the menu bar

3. Find the LiteDAC directory and open the LiteDACDemo project. This project should be

located in the Demos\LiteDACDemo folder.

For example, if you are using Borland Developer Studio 2006, the demo project may be found at

\Program Files\Devart\LiteDAC for Delphi 2006\Demos\Win32\LiteDACDemo
\LiteDACDemo.bdsproj

4. Select Run | Run or press F9 to compile and launch the demo project. LiteDACDemo
should start, and a full-screen LiteDAC Demo window with a toolbar, an explorer panel, and
a view panel will open. The explorer panel will contain the list of all demo sub-projects
included in LiteDACDemo, and the view panel will contain an overview of each included

demo.

At this point, you will be able to browse through the available demos, read their descriptions,
view their source code, and see the functionality provided by each demo for interacting with
SQLite. However, you will not be able to actually retrieve data from SQLite or execute
commands until you connect to the database.

5. Click on the "Connect" button on the LiteDACDemo toolbar. A Connect dialog box will open.
Enter the connection parameters you use to connect to your SQLite database and click
"Connect" in the dialog box.

Now you have a fully functional interface to your SQLite database. You will be able to go through
the different demos, to browse tables, create and drop objects, and execute SQL commands.

Warning! All changes you make to the database you are connected to, including creating

and dropping objects used by the demo, will be permanent. Make sure you specify a test
database in the connection step.

© 2024 Enter your company name

Getting Started 42

6. Click on the "Create" button to create all objects that will be used by LiteDACDemo. If
some of these objects already exist in the database you have connected to, the following
error message will appear.

An error has occurred:

#42S01Table 'dept’ already exists

You can manually create objects required for demo by using the following file: %LiteDAC %
\Demos\InstallDemoObjects.sql

%LiteDAC% is the LiteDAC installation path on your computer.
Ignore this exception?

This is a standard warning from the object execution script. Click "Yes to All" to ignore this
message. LiteDACDemo will create the LiteDACDemo objects in the database you have
connected to.

7. Choose a demo that demonstrates an aspect of working with SQLite that you are
interested in, and play with the demo frame in the view window on the right. For example, to
find out more about how to work with SQLite tables, select the Table demo from the
"Working with Components" folder. A simple SQLite table browser will open in the view
panel which will let you open a table in your database by specifying its name and clicking on
the Open button.

8. Click on the "Demo source" button in the LiteDACDemo toolbar to find out how the demo
you selected was implemented. The source code behind the demo project will appear in
the view panel. Try to find the places where LiteDAC components are used to connect to
the database.

9. Click on the "Form as text" button in the LiteDACDemo toolbar to view the code behind the
interface to the demo. Try to find the places where LiteDAC components are created on the
demo form.

10.Repeat these steps for other demos listed in the explorer window. The available demos

are organized in three folders.
Working with components
A collection of projects that show how to work with basic LiteDAC components.

General demos

© 2024 Enter your company name

43

SQLite Data Access Components

A collection of projects that show off the LiteDAC technology and demonstrate some ways
of working with data.

SQLite-specific demos

A collection of projects that demonstrate how to incorporate SQLite features in database
applications.
11.When you are finished working with the project, click on the "Drop" button in the

LiteDACDemo toolbar to remove all schema objects added in Step 6.

Other LiteDAC demo projects

LiteDAC is accompanied by a number of other demo projects. A description of all LiteDAC
demos is located in the Demo Projects topic.

Compiling and deploying your LiteDAC project

Compiling LiteDAC-based projects

By default, to compile a project that uses LiteDAC classes, your IDE compiler needs to have
access to the LiteDAC dcu (obj) files. If you are compiling with runtime packages, the
compiler will also need to have access to the LiteDAC bpl files. All the appropriate settings
for both these scenarios should take place automatically during installation of
LiteDAC. You should only need to modify your environment manually if you are using the

LiteDAC edition that comes with source code - LiteDAC Professional Edition with Source
Code.

You can check that your environment is properly configured by trying to compile one of the
LiteDAC demo projects. If you have no problems compiling and launching the LiteDAC
demos, your environment has been properly configured.

For more information about which library files and environment changes are needed for
compiling LiteDAC-based projects, consult the Installation topic.

Deploying LiteDAC-based projects
To deploy an application that uses LiteDAC, you will need to make sure the target workstation
has access to the following files.

e The SQLite client library, if connecting using SQLite client.

© 2024 Enter your company name

Getting Started 44

¢ The LiteDAC bpl files, if compiling with runtime packages.

If you are evaluating deploying projects with LiteDAC Trial Edition, you will also need to deploy
some additional bpl files with your application even if you are compiling without runtime
packages. As another trial limitation for C++Builder, applications written with LiteDAC Trial
Edition for C++Builder will only work if the C++Builder IDE is launched. More information
about LiteDAC Trial Edition limitations is provided here.

A list of the files which may need to be deployed with LiteDAC-based applications is included
in the Deployment topic.

Using the LiteDAC documentation

The LiteDAC documentation describes how to install and configure LiteDAC, how to use
LiteDAC Demo Projects, and how to use the LiteDAC libraries.

The LiteDAC documentation includes a detailed reference of all LiteDAC components and
classes. Many of the LiteDAC components and classes inherit or implement members from
other VCL, LCL and FMX classes and interfaces. The product documentation also includes a
summary of all members within each of these classes. To view a detailed description of a
particular component, look it up in the Components List section. To find out more about a

specific standard VCL/LCL class a LiteDAC component is inherited from, see the
corresponding topic in your IDE documentation.

At install time, the LiteDAC documentation is integrated into your IDE. It can be invoked from
the LiteDAC menu added to the Menu Bar, or by pressing F1 in an object inspector or on a
selected code segment.

How to get help with LiteDAC

There are a number of resources for finding help on using LiteDAC classes in your project.
e If you have a question about LiteDAC installation or licensing, consult the Licensing and

FAQ sections.

¢ You can get community assistance and LiteDAC technical support on the LiteDAC Support

Forum.

¢ To get help through the LiteDAC Priority Support program, send an email to the LiteDAC

development team at litedac@devart.com.

© 2024 Enter your company name

https://support.devart.com/portal/en/community/delphi-data-access-components
https://support.devart.com/portal/en/community/delphi-data-access-components
mailto:litedac@devart.com

45

SQLite Data Access Components

3.1

e |f you have a question about ordering LiteDAC or any other Devart product, contact

sales@devart.com.

For more information, consult the Getting Support topic.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Installation

This topic contains the environment changes made by the LiteDAC installer. If you are having
problems using LiteDAC or compiling LiteDAC-based products, check this list to make sure
your system is properly configured.

Compiled versions of LiteDAC are installed automatically by LiteDAC Installer for all supported
IDEs except for Lazarus. Version of LiteDAC with Source Code must be installed manually.
Installation of LiteDAC from sources is described in the supplied ReadmeSrc.html file.

Before installing LiteDAC ...

Two versions of LiteDAC cannot be installed in parallel for the same IDE, and, since the
Devart Data Access Components products have some shared bpl files, newer versions of
LiteDAC may be incompatible with older versions of ODAC, IBDAC, SDAC, MyDAC, PgDAC
and UniDAC.

So before installing a new version of LiteDAC, uninstall all previous versions of LiteDAC you
may have, and check if your new install is compatible with other Devart Data Access
Components products you have installed. For more information please see Using several
products in one IDE. If you run into problems or have any compatibility questions, please

email litedac@devart.com

Note: You can avoid performing LiteDAC uninstallation manually when upgrading to a new
version by directing the LiteDAC installation program to overwrite previous versions. To do
this, execute the installation program from the command line with a / f or ce parameter
(Start|Runand type | i t edacXX. exe /force, specifying the full path to the appropriate

version of the installation program) .

Installed packages

© 2024 Enter your company name

mailto:sales@devart.com
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
mailto:litedac@devart.com

Getting Started

46

Note: %.i t eDAC%denotes the path to your LiteDAC installation directory.

Delphi/C++Builder Win32 project packages

Name Description Location
dacXX.bpl DAC run-time package |(Windows\System32
deldacXX bpl DAC design-time Delphi\Bin
package
dacvelXX.bpl DAC VCL support Delphi\Bin
package
litedacXX.bpl LiteDAC run-time Windows\System32
package
LiteDAC design-time

dcllitedacXX.bpl Delphi\Bin

package
litedacvcIXX.bpl VCL support package Delphi\Bin
crcontrolsXX.bpl TCRDBGrid component Delphi\Bin

Additional packages for using LiteDAC managers and wizards

Name Description Location
datasetmanagerXX. |DataSet Manager Delphi\Bin
bpl package

Environment Changes

To compile LiteDAC-based applications, your environment must be configured to have
access to the LiteDAC libraries. Environment changes are IDE-dependent.

For all instructions, replace %.i t eDAC%with the path to your LiteDAC installation directory

Delphi
e %.i t eDAC% Li b should be included in the Library Path accessible from Tools |

Enviroment options | Library.

The LiteDAC Installer performs Delphi environment changes automatically for compiled
versions of LiteDAC.

C++Builder
C++Builder 6:

© 2024 Enter your company name

47

SQLite Data Access Components

e $(BCB)\ Li t eDAC\ Li b should be included in the Library Path of the Default Project
Options accessible from Project | Options | Directories/Conditionals.

e $(BCB)\ Li t eDAC\ | ncl ude should be included in the Include Path of the Default Project

Options accessible from Project | Options | Directories/Conditionals.

C++Builder 2006, 2007:
e $(BCB)\ Li t eDAC\ Li b should be included in the Library search path of the Default
Project Options accessible from Project | Default Options | C++Builder | Linker | Paths and

Defines.

e $(BCB)\ Li t eDAC\ | ncl ude should be included in the Include search path of the Default
Project Options accessible from Project | Default Options | C++Builder | C++ Compiler |

Paths and Defines.

The LiteDAC Installer performs C++Builder environment changes automatically for compiled
versions of LiteDAC.

Lazarus

The LiteDAC installation program only copies LiteDAC files. You need to install LiteDAC
packages to the Lazarus IDE manually. Open %LiteDAC%\Source\Lazarus 1\dcllitedac10.Ipk
(for Trial version %LiteDAC%\Packages\dcllitedac10.Ipk) file in Lazarus and press the Install
button. After that Lazarus IDE will be rebuilded with LiteDAC packages.

Do not press the the Compile button for the package. Compiling will fail because there are no
LiteDAC sources.

To check that your environment has been properly configured, try to compile one of the demo
projects included with LiteDAC. The LiteDAC demo projects are located in %LiteDAC%/
Demos.

DBMonitor

DBMonitor is an easy-to-use tool to provide visual monitoring of your database applications. It
is provided as an alternative to Borland SQL Monitor which is also supported by LiteDAC.
DBMonitor is intended to hamper application being monitored as little as possible. For more
information, visit the DBMonitor page online.

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/dbmonitor/
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Getting Started 48

Devart. All Rights
Reserved.

3.2 Connecting To SQLite Database

This tutorial describes how to connect to SQLite Database.

Requirements

LiteDAC supports 2 modes of working with SQLite database:

1. Direct Mode - no additional client libraries required;

2. Using sqlite3.dll(.o,.dylib) client library - requires a corresponding client library on a
particular PC or device. The library must be located either in the application folder or in the

folder specified in the environmental variables.

Delphi Data

Access Components

General information
SQLite works with 3 database types: real DB file, temp DB file, and DB in memory.

To use different DB types, a corresponding value must be set in the
TLiteConnection.Database proeprty. To work with a DB file,you have to specify the full,

relative or UNC path to the DB file. To work with a database in memory, the :memory:' value
must be set. To work with a temporary database, the property value should be empty.

To switch modes of work with the database, the TLiteConnectionOptions.Direct property is

used. The property is set to False by default (client library mode). To use the Direct mode, the
proeprty must be set to True.

When connecting to a database file, if it doesn't exist, the file can be created automatically.
For this, the TLiteConnectionOptions.ForceCreateDatabase property must be set to True. Its

© 2024 Enter your company name

https://www.devart.com/dac.html

49

SQLite Data Access Components

default value is False. On an attempt to connect to a non-existing DB file with disabled
ForceCreateDatabase, an error message will be displayed saying that such a file doesn't
exist.

Note: this option doesn't apply to working with a temp database and an in-memory database.

Note: when working with client library, its bitness must match the application bitness, i.e. a

32-bit application can work with a 32-bit library version only, and 64-bit - only with 64-bit.

Creating connection

Design time creation
The following assumes that you have IDE running, and you are currently focused on a form
designer.

1. Open the Component palette and find the TLiteConnection component in the LiteDAC

category.

2. Double-click the component.

Note: a new object appears on the form. If this is the first time you create TLiteConnection in

this application, it is named LiteConnection1.

After you have done these steps, you should set up the newly created LiteConnection1
component. You can do this in two ways:

Using TLiteConnection Editor

1. Double-click on the LiteConnection1 object.

2. In the Database edit box specify the database name (for example, test.db3). If Database is
not specified, the temporary database is used.

3. If a client library with suppport for encryption or Direct Mode is used, then you can specify
the key to the database file in the Encryption Key edit box.

4. If Direct Mode is used, then you can select an encryption algorithm in the Encription
Algorithm ComboBox. When using a client library, the standard algorithm built into the
library is used.

5. You can specify a particular SQLite3 library in the Client Library edit box.

© 2024 Enter your company name

Getting Started 50

6. To enable Direct Mode, the Direct CheckBox must be checked.

Using Object Inspector

1. Click on the LiteConnection1 object and press F11 to focus on object's properties.

2. In the Database property specify the database name (for example,test.db3). If Database is
not specified, the temporary database is used.

3. If a client library with suppport for encryption or Direct Mode is used, then you can specify
the key to the database file in the EncryptionKey poperty.

4. If Direct Mode is used, then you can select an encryption algorithm in the
Options.EncriptionAlgorithm proeprty. When using a client library, the standard algorithm

built into the library is used.
5. You can specify a particular SQLite3 library in the ClientLibrary property.
6. To enable Direct Mode, the Options.Direct property must be set to True.

Run time creation

Same operations performed in runtime look as follows:

[Delphi]
var
LiteConnection: TLiteConnection;
begin
LiteConnection := TLiteConnection.Create(nil);
try
LiteConnection.Database := 'test.db3';
LiteConnection.Options.ForceCreateDatabase := True;
LiteConnection.Options.Direct := True;
LiteConnection.Encryptionkey := '123';
LiteConnection.Options.EncryptionAlgorithm := 1eAES256;
LiteConnection.LoginPrompt := False; //to prevent showing of the connect
LiteConnection.Connect;
finally
LiteConnection.Free;
end;
end.

Note: To run this code, you have to add the LiteAccess and LiteCall units to the USES clause

of your unit.

[C++Builder]
{

© 2024 Enter your company name

51

SQLite Data Access Components

TLiteConnection* LiteConnection = new TLiteConnection(NULL);

try
{

LiteConnection->Database = "test.db3";
LiteConnection->0ptions->ForceCreateDatabase = True;
LiteConnection->0ptions->Direct = True;

LiteConnection->EncryptionkKey = '123';
LiteConnection->0ptions->EncryptionAlgorithm = 1eAES256;

False; //to prevent showing of the connect

LiteConnection->LoginPrompt =
LiteConnection->Connect();

finally

LiteConnection->Free();

}
I

Note: To run this code, you have to include the LiteAccess.hpp and LiteCall.hpp header files

to your unit.

And using the ConnectString property:

[Delphi]

var

LiteConnection: TLiteConnection;

begin
LiteConnection := TLiteConnection.Create(nil);

try
LiteConnection.ConnectString
LiteConnection.Connect;

finally
LiteConnection.Free;

end;

end.

'Database=test.db3;ForceCreateDatabase=T

Note: To run this code, you have to add the LiteAccess and LiteCall units to the USES clause

of your unit.

[C++Builder]

{

TLiteConnection* LiteConnection
try
{

LiteConnection->ConnectString
LiteConnection->Connect();

o
__finally
{

LiteConnection->Free();

new TLiteConnection(NULL);

"Database=test.db3;ForceCreateDatabase=T

© 2024 Enter your company name

Getting Started 52

Note: To run this code, you have to include the LiteAccess.hpp and LiteCall.hpp header files

to your unit.

Opening connection

As you can see above, opening a connection at run-time is as simple as calling of the
Connect method:

[Delphi]

LiteConnection.Connect;
[C++Builder]

LiteConnection->Connect();

Another way to open a connection at run-time is to set the Connected property to True:
[Delphi]

LiteConnection.Connected
[C++Builder]

True;

LiteConnection->Connected = True;

This way can be used at design-time as well. Of course, LiteConnection1 must have valid
connection options assigned earlier. When you call Connect, LiteDAC tries to find the
database file and connect to it. If any problem occurs, it raises an exception with brief
explanation on what is wrong. If no problem is encountered, LiteDAC tries to establish the
connection. Finally, when connection is established, the Connect method returns and the
Connected property is changed to True.

Closing connection

To close a connection, call its Disconnect method, or set its Connected property to False:
[Delphi]

LiteConnection.Close;
[C++Builder]

LiteConnection.Close();

,or

© 2024 Enter your company name

53

SQLite Data Access Components

3.3

[Delphi]

LiteConnection.Connected := False;
[C++Builder]

LiteConnection.Connected = False;

Modifying connection

You can modify connection by changing properties of TLiteConnection object. Keep in mind
that while some of the properties can be altered freely, most of them close connection when
the new value is assigned. For example, if you change Database property, it gets closed
immediately, and you have to reopen it manually.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Creating Database Objects

This tutorial describes how to create tables, stored procedures and other objects in SQLite
Database.

Requirements

In order to create database objects, you have to connect to SQLite DB. This process is
described in details in the tutorial Connecting To SQLite Database.

General information

Database objects are created using Data Definition Language (DDL), which is a part of SQL.
There are two ways to create database objects. You can build DDL statements manually and
execute them using the component like TLiteSQL. Another way is to use console utility
sqlite3.exe This topic covers the first way - using components.

There are two ways of executing DDL statements in components like TLiteSQL, in design-
time and in run-time. Both these ways are described below.

Note: the following assumes that you have the IDE running, you are currently focused on the

form designer, and you have already set up the TLiteConnection on the form.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Getting Started 54

Creating tables

To create tables, the TLiteSQL component is used here.

Design time creation
e Open the Component palette and find the TLiteSQL component in the LiteDAC.

¢ Double-click on the component. Note that new object appears on the form. If this is the first

time you create TLiteSQL in this application,

it is named LiteSQL1. Note that the LiteSQL1.Connection property is already set to existent
(on the form) connection.

e Double-click on the LiteSQL1 object.

* Type the following lines:

CREATE TABLE dept (
deptno INTEGER PRIMARY KEY,
dname VARCHARZ2(14),
5 Toc VARCHAR2(13)
CREATE TABLE emp (
empno INTEGER PRIMARY KEY,
ename VARCHARZ2(10),
job VARCHAR2(9),
mgr INTEGER,
hiredate DATE,
sal FLOAT,
comm FLOAT,
5 deptno INTEGER

* Press the Execute button. This will create two tables we will use for tutorial purposes.

Run time creation

The same operations performed in runtime look as follows:

[Delphi]
var _
L'! teSQL: TL1teSQL;
begin . .
LiteSQL:= TLiteSQL.Create(nil);
try
// LiteConnection is either TLiteConnection already set up
LiteSQL.Connection := LiteConnection;

// set SQL script for creating tables

© 2024 Enter your company name

55

SQLite Data Access Components

fi

end

end;
[C++Builder]

}

LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.
LitesqQL.

SQL.
SQL.
SQL.
SQL.
SQL.
SQL.
SQL.
SQL.
SQL.
SQL.
SQL.
SQL.
SQL.
SQL.
SQL.
SQL.

Clear;

Add('CREATE TABLE dept (');
Add(' deptno INTEGER, ');
Add(' dname VARCHAR2(14),');
Add(' Toc VARCHAR2(13)');
Add(');");

Add('CREATE TABLE emp (');

Add (' empno INTEGER PRIMARY KEY, ');
Add(' ename VARCHAR2(10),');

Add(' job VARCHAR2(9),');

Add(' mgr INTEGER,');

Add(' hiredate DATE,');

Add(' sal FLOAT,"');

Add(' comm FLOAT,');

Add(' deptno INTEGER');

Add(');');

// execute script
L1teSQL.Execute;

nally

LiteSQL.Free;

TLiteSQL* LiteSQL= new TLiteSQL(NULL);

tr

}
T
}

y

// LiteConnection 1is either TLiteConnection already set up

LiteSQL->Connection

= LiteConnection;

// set SQL script for creating tables
LitesSQL->SQL->Clear();
LiteSQL->SQL->Add("CREATE TABLE dept ™;
deptno INTEGER PRIMARY KEY,'");

LitesSQL->SQL->Add ("
LitesQL->SQL->Add ("
LitesSQL->SQL->Add ("

dname VARCHAR2(14),");
Toc VARCHAR2(13)");

LitesSQL->SQL->Add(");");
LiteSQL->SQL->Add("CREATE TABLE emp (");
empno INTEGER PRIMARY KEY,'");

LiteSQL->SQL->Add ("
LiteSQL->SQL->Add("
LitesQL->SQL->Add ("
LitesSQL->SQL->Add ("
LiteSQL->SQL->Add ("
LiteSQL->SQL->Add ("
LiteSQL->SQL->Add ("
LiteSQL->SQL->Add ("

ename VARCHAR2(10),');
job VARCHAR2(9),");
mgr INTEGER,");
hiredate DATE,");

sal FLOAT,");

comm FLOAT,");

deptno INTEGER");

LitesSQL->SQL->Add(");");
// execute script
LitesQL->Execute();

finally

LitesQL->Free();

© 2024 Enter your company name

Getting Started 56

Additional Information

Actually, there are lots of ways to create database objects on server. Any tool or component
that is capable of running a SQL query, can be used to manage database objects. For
example, TLiteSQL suits fine for creating objects one by one, while TLiteScript is designed for
executing series of DDL/DML statements. For information on DDL statements syntax refer to
SQLite documentation.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

3.4 Deleting Data

This tutorial describes how to delete data from tables using the TLiteQuery and TLiteTable

components.

Requirements

This walkthrough supposes that you know how to connect to server (tutorials "Connecting To

SQLite Database"), how to create necessary objects in a database (tutorial "Creating

Database Objects"), and how to insert data to created tables (tutorial "Inserting Data Into
Tables").

General information

Data in the database can be deleted using Data Manipulation Language (DML), which is a part
of SQL. There are two ways to manipulate a database. You can build DML statements
manually and run them within some component like TLiteQuery. Another way is to use the
dataset functionality (the Delete method) of the TLiteQuery and TLiteTable components. We
will discuss both ways. The goal of this tutorial is to delete a record in the table dept.

Using DataSet Functionality

The Delete method of the TLiteQuery and TLiteTable components allows deleting data
without using DML statements. DML statements are generated by LiteDAC components
internally. The code below demonstrates using this method:

[Delphi]

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

57

SQLite Data Access Components

var
LiteQuery: TLiteQuery;
begin
LiteQuery := TLiteQuery.Create(nil);
try
// LiteConnection 1is either TLiteConnection already set up
LiteQuery.Connection := LiteConnection;
// retrieve data
LiteQuery.SQL.Text := 'SELECT * FROM dept';
LiteQuery.Open;
// delete the current record
LiteQuery.Delete;
finally
LiteQuery.Free;
end;
end;

[C++Builder]

{

TLiteQuery* LiteQuery = new TLiteQuery(NULL);

try

{
// LiteConnection 1is either TLiteConnection already set up
LiteQuery->Connection = LiteConnection;
// retrieve data
LiteQuery->SQL->Text = "SELECT * FROM dept";
LiteQuery->0pen();
// delete the current record
LiteQuery->Delete();

finally

LiteQuery->Free();

‘-v-'r-“-\l\-v-‘

Building DML Statements Manually

DML Statements can contain plain text and text with parameters. This section describes both
ways.

DML Statements With Parameters
[Delphi]

var _
LiteQuery: TLiteQuery;
begin : :
LiteQuery := TLiteQuery.Create(nil);
try
// LiteConnection 1is either TLiteConnection already set up

© 2024 Enter your company name

Getting Started 58

LiteQuery.Connection := LiteConnection;
// set SQL query for delete record
LiteQuery.sQL.Clear;
LiteQuery.SQL.Add('DELETE FROM dept WHERE deptno = :deptno;');
// set parameters
LiteQuery.ParamByName('deptno') .AsInteger := 10;
// execute query
LiteQuery.Execute;

finally
LiteQuery.Free;

end;

end;

[C++Builder]

{

TLiteQuery* LiteQuery = new TLiteQuery(NULL);

try

{
// LiteConnection 1is either TLiteConnection already set up
LiteQuery->Connection = LiteConnection;
// set SQL query for delete record
LiteQuery->SQL->Clear();
LiteQuery->SQL->Add("DELETE FROM dept WHERE deptno = :deptno;");
// set parameters
LiteQuery->ParamByName("deptno")->AsInteger = 10;
// execute query
LiteQuery->Execute();

finally

LiteQuery->Free();

DML Statements As Plain Text

[Delphi]
var _
LiteQuery: TLiteQuery;
begin . .
LiteQuery := TLiteQuery.Create(nil);
try
// LiteConnection is either TLiteConnection already set up
LiteQuery.Connection := LiteConnection;

// set SQL query for delete record
LiteQuery.sSQL.Clear;
LiteQuery.SQL.Add('DELETE FROM dept WHERE deptno = 10;');
// execute query
LiteQuery.Execute;

finally
LiteQuery.Free;

end;

end;

© 2024 Enter your company name

59

SQLite Data Access Components

3.5

[C++Builder]

{

TLiteQuery* LiteQuery = new TLiteQuery(NULL);

try

{
// con 1is either TLiteConnection already set up
LiteQuery->Connection = con;
// set SQL query for delete record
LiteQuery->SQL->Clear();
LiteQuery->SQL->Add("DELETE FROM dept WHERE deptno = 10;");
// execute query
LiteQuery->Execute();

finally

LiteQuery->Free();

H—’r—"ﬂ|‘-v-’

}

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Inserting Data Into Tables

This tutorial describes how to insert data into tables using the TLiteQuery and TLiteTable

components.

Requirements

This walkthrough supposes that you know how to connect to server (tutorials "Connecting To

SQLite Database") and that necessary objects are already created in the database (tutorial

"Creating Database Objects").

General information

Data on server can be inserted using Data Manipulation Language (DML), which is a part of
SQL. DML statements can be executed on server by an account that has necessary
privileges. There are two ways to manipulate a database. You can build DML statements
manually and run them within some component like TLiteQuery. Another way is to use the
dataset functionality (the Insert, Append, and Post methods) of the TLiteQuery and TLiteTable

components. We will discuss both ways.

The goal of this tutorial is to insert the following data into tables dept and emp:

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Getting Started

Table dept

deptn dnam

loc
o e
10 Gﬁ%ﬁ NEW
G YORK
20 RESE DALL
ARCH AS
30 SALE |CHIC
S AGO
OPER
40 ATION/BOST
ON
S
Table emp
enam |, hireda deptn
job mgr sal comm
e te o
CLER 17.12.
SMITHK 7902 1980 800 |NULL 20
ALLE SALE 20.02.
N SMAN7698 1981 1600 (300 30
WAR |SALE 22.02.
D SMAN7698 1981 1250 |500 30
JONE MANA 02.04.
3 GER 7839 1981 2975 |NULL |20
MARTISALE 28.09.
N SMAN7698 1981 1250 (1400 30
BLAK MANA 01.05.
E GER 7839 1981 2850 |NULL 30
CLAR MANA 09.06.
K GER 7839 1981 2450 |NULL 10
SCOT |ANAL 13.07.
T YST 7566 1987 3000 |NULL 20
PRESI 17.11.
KING DENT NULL 1981 5000 |NULL 10
TURN |SALE 08.09.
ER SMAN7698 1981 1500 |0 30
ADAM CLER 13.07.
3 K 7788 1987 1100 |NULL 20
JAME CLER 03.12.

7698

s K 1981 950 |NULL 30

© 2024 Enter your company name

61

SQLite Data Access Components

FORD ANAL 17566 103-12. 13509 |NULL 120

YST 1981
MILLE |ICLER 23.01.
R K 7782 1982 1300 |NULL |10

Note: The empno field of the emp table is an IDENTITY(1,1) (i.e. autoincrement) field, so its

value is filled automatically by the server.

Design time
¢ Open the Component palette and find the TLiteQuery component in the LiteDAC category.

¢ Double-click on the component. Note that a new object appears on the form. If this is the
first time you create TLiteQuery in this application, it is named MSQuery1. Note that the

LiteQuery1.Connection property is already set to an existent (on the form) connection.
e Double-click on the MSQuery1 object.
¢ Type the following lines:

INSERT INTO dept VALUES (10, 'ACCOUNTING','NEW YORK');

® Press the Execute button.

Performing these steps adds a new record to the dept table.

Run time

Using DataSet Functionality

The Insert, Append, and Post methods of the TLiteQuery and TLiteTable components allow
inserting data not using DML statements. DML statements are generated by LiteDAC
components internally. The difference between the Append and Insert methods is that Append
creates a new empty record in the end of a dataset, when Insert creates it in the position of

the current record of a dataset. The code below demonstrates using these methods:
[Delphi]

var
LiteQuery: TLiteQuery;

begin
LiteQuery := TLiteQuery.Create(nil);

© 2024 Enter your company name

Getting Started

try
// LiteConnection is either TLiteConnection already set
LiteQuery.Connection := LiteConnection;
// retrieve data
LiteQuery.SQL.Text := 'SELECT * FROM dept';

LiteQuery.Open;
// append record
LiteQuery.Append;

LiteQuery.FieldByName('deptno') .AsInteger := 10;
LiteQuery.FieldByName('dname') .AsString := '"ACCOUNTING';
LiteQuery.FieldByName('loc').AsString := 'NEW YORK';
LiteQuery.Post;

// insert record

LiteQuery.Insert;
LiteQuery.FieldByName('deptno') .AsInteger := 20;
LiteQuery.FieldByName('dname') .AsString := 'RESEARCH';
LiteQuery.FieldByName('loc') .AsString := 'DALLAS';

LiteQuery.Post;
finally
LiteQuery.Free;
end;
end;

[C++Builder]

TLiteQuery* LiteQuery = new TLiteQuery(NULL);
try

// LiteConnection 1is either TLiteConnection already set

LiteQuery->Connection = LiteConnection;
// retrieve data
LiteQuery->SQL->Text = "SELECT *
LiteQuery->0pen();

// append record
LiteQuery->Append();

FROM dept";

LiteQuery->FieldByName("deptno")->AsInteger = 10;

LiteQuery->FieldByName("dname")->AsString = "ACCOUNTING";

LiteQuery->FieldByName("loc")->AsString = "NEW YORK";

LiteQuery->Post();
// insert record
LiteQuery->Insert();

LiteQuery->FieldByName("deptno")->AsInteger

20;

LiteQuery->FieldByName("dname")->AsString = "RESEARCH";
LiteQuery->FieldByName("loc")->AsString = "DALLAS";

LiteQuery->Post();
finally

g->Free();

Building DML Statements Manually

62

© 2024 Enter your company name

63

SQLite Data Access Components

DML Statements can contain plain text and text with parameters. This section describes both
ways.

DML Statements With Parameters

[Delphi]
var _
LiteQuery: TLiteQuery;
begin . .
LiteQuery := TLiteQuery.Create(nil);
try
// LiteConnection is either TLiteConnection already set up
LiteQuery.Connection := LiteConnection;

// set SQL query for insert record
LiteQuery.SQL.Clear;
LiteQuery.SQL.Add('INSERT INTO dept(deptno, dname, loc) VALUES (:deptno,
// set parameters
LiteQuery.ParamByName('deptno') .AsInteger := 10;
LiteQuery.ParamByName('dname') .AsString := 'ACCOUNTING';
LiteQuery.ParamByName('loc').AsString := '"NEW YORK';
// execute query
LiteQuery.Execute;

finally
LiteQuery.Free;

end;

end;

[C++Builder]

{

TLiteQuery* LiteQuery = new TLiteQuery(NULL);

try

{ . L . .
// LiteConnection is either TLiteConnection already set up
LiteQuery->Connection = LiteConnection;
// set SQL query for 1insert record
LiteQuery->SQL->Clear();
LiteQuery->SQL->Add("INSERT INTO dept(deptno, dname, loc) VALUES (:deptn
// set parameters
LiteQuery->ParamByName('deptno")->AsInteger = 10;
LiteQuery->ParamByName("'dname")->AsString = "ACCOUNTING";
LiteQuery->ParamByName("loc")->AsString = "NEW YORK";
// execute query
LiteQuery->Execute();

finally

LiteQuery->Free();

© 2024 Enter your company name

Getting Started 64

DML Statements As Plain Text

[Delphi]
vvar _
LiteQuery: TLiteQuery;
begin . .
LiteQuery := TLiteQuery.Create(nil);
try
// LiteConnection is either TLiteConnection already set up

LiteQuery.Connection := LiteConnection;
// set SQL query for insert record
LiteQuery.sQL.Clear;
LiteQuery.SQL.Add('INSERT INTO dept(deptno, dname, loc) VALUES (10, ''AcCC
// execute query
LiteQuery.Execute;

finally
LiteQuery.Free;

end;

end;

[C++Builder]

{
TLiteQuery* LiteQuery = new TLiteQuery(NULL);
try

// LiteConnection is either TLiteConnection already set up
LiteQuery->Connection = LiteConnection; // con is either TLiteConnection
// set SQL query for insert record

LiteQuery->SQL->Clear();

LiteQuery->SQL->Add("INSERT INTO dept(deptno, dname, loc) VALUES (10, 'AC
// execute query

LiteQuery->Execute();

finally

LiteQuery->Free();

‘-v-‘r-‘-\|‘-v-'

Additional Information

Actually, there are lots of ways to insert data into tables. Any tool or component that is
capable of running a SQL query, can be used to manage data. Some components are best
for performing certain tasks. For example, TLiteLoader is the fastest way to insert data,
TLiteScript is designed for executing series of statements one by one.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

65

SQLite Data Access Components

3.6

Retrieving Data

This tutorial describes how to retrieve data from tables using the TLiteQuery and TLiteTable

components.

Requirements

This walkthrough supposes that you know how to connect to server (tutorials "Connecting To

SQLite Database"), how to create necessary objects on the server (tutorial "Creating

Database Objects"), and how to insert data to created tables (tutorial "Inserting Data Into
Tables").

General information

As we know, an original function of any database application is establishing connection to a
data source and working with data contained in it. LiteDAC provides several components that
can be used for data retrieving, such as TLiteQuery and TLiteTable. We will discuss data

retrieving using these components.

The goal of this tutorial is to retrieve data from a table dept.

TLiteQuery

The following code demonstrates retrieving of data from the dept table using the TLiteQuery

component:
[Delphi]
var _
LiteQuery: TLiteQuery;
begin . .
LiteQuery := TLiteQuery.Create(nil);
try
// LiteConnection is either TLiteConnection already set up
LiteQuery.Connection := LiteConnection;
// retrieve data
LiteQuery.SQL.Text := 'SELECT * FROM dept';

LiteQuery.Open;
// shows the number of records obtained from the server
ShowMessage (IntToStr(LiteQuery.RecordCount));
finally
LiteQuery.Free;
end;
end;

© 2024 Enter your company name

Getting Started 66

[C++Builder]

{

TLiteQuery* LiteQuery = new TLiteQuery(NULL);

try

i .
// LiteConnection 1is either TLiteConnection already set up
LiteQuery->Connection = LiteConnection;
// retrieve data
LiteQuery->SQL->Text = "SELECT * FROM dept";
LiteQuery->0pen();
// shows the number of records obtained from the server
ShowMessage (IntToStr(LiteQuery->RecordCount));

finally

f—*q|t-v-'

LiteQuery->Free();

TMyTable

The following code demonstrates retrieving of data from the dept table using the TLiteTable
component:

[Delphi]

var
LiteTable: TLiteTable;
begin
LiteTable := TLiteTable.Create(nil);
try
// LiteConnection 1is either TLiteConnection already set up
LiteTable.Connection := LiteConnection;
// retrieve data
LiteTable.TableName := 'dept';
LiteTable.Open;
// shows the number of records obtained from the server
ShowMessage(IntToStr(LiteTable.RecordCount));
finally
LiteTable.Free;
end;
end;

[C++Builder]

TLiteTable* LiteTable = new TLiteTable(NULL);
try

// LiteConnection is either TLiteConnection already set up
LiteTable->Connection = LiteConnection;
// retrieve data

© 2024 Enter your company name

67

SQLite Data Access Components

3.7

LiteTable->TableName = "dept";

LiteTable->0pen();

// shows the number of records obtained from the server
ShowMessage(IntToStr(LiteTable->RecordCount));

finally

LiteTable->Free();

H—’r—"ﬂ|‘-v-’

}

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Modifying Data

This tutorial describes how to modify data in tables using the TLiteQuery and TLiteTable

components.

Requirements

This walkthrough supposes that you know how to connect to server (tutorials "Connecting To
SQLite Database"), how to create necessary objects on the server (tutorial "Creating
Database Objects"), and how to insert data to created tables (tutorial "Inserting Data Into

Tables").

General information

Data on server can be modified using Data Manipulation Language (DML), which is a part of
SQL. DML statements can be executed on server by an account that has necessary
privileges. There are two ways to manipulate a database. You can build DML statements
manually and run them within some component like TLiteQuery. Another way is to use the
dataset functionality (the Edit and Post methods) of the TLiteQuery and TLiteTable
components. We will discuss both ways. The goal of this tutorial is to modify the following

record of the table dept:

ACCO
10 [UNTIN
G

NEW
YORK

to make it look as follows:

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Getting Started 68

LOS
RESEA
10RCH éNGELE

Using DataSet Functionality

The Edit and Post methods of the TLiteQuery and TLiteTable components allow deleting data
without using DML statements. DML statements are generated by LiteDAC components
internally. The code below demonstrates using these methods:

[Delphi]
var _
LiteQuery: TLiteQuery;
begin : :
LiteQuery := TLiteQuery.Create(nil);
try
// LiteConnection is either TLiteConnection already set up
LiteQuery.Connection := LiteConnection;
// retrieve data
LiteQuery.SQL.Text := 'SELECT * FROM dept';

LiteQuery.oOpen;

// to make the record with deptno=10 the current record
LiteQuery.FindKey([10]);

// modify record

LiteQuery.Edit;

LiteQuery.FieldByName('dname') .AsString := 'RESEARCH';
LiteQuery.FieldByName('loc') .AsString := 'LOS ANGELES';
LiteQuery.Post;
finally
LiteQuery.Free;
end;
end;
[C++Builder]
t_ . . .
TLiteQuery* LiteQuery = new TLiteQuery(NULL);
try
{

// LiteConnection 1is either TLiteConnection already set up
LiteQuery->Connection = LiteConnection;

// retrieve data

LiteQuery—>SQL—>Text = "SELECT * FROM dept";
LiteQuery->0pen();

// to make the record with deptno=10 the current record
LiteQuery->FindKey (ARRAYOFCONST((10)));

// modify record

LiteQuery->Edit();
LiteQuery->FieldByName("dname")->AsString = "RESEARCH";
LiteQuery->FieldByName("loc")->AsString = "LOS ANGELES";

© 2024 Enter your company name

69

SQLite Data Access Components

‘-v"f'“'\lHJ

LiteQuery->Post();
finally

LiteQuery->Free();

Building DML Statements Manually

DML Statements can contain plain text and text with parameters. This section describes both

ways.

DML Statements With Parameters

[Delphi]
var _
LiteQuery: TLiteQuery;
begin . .
LiteQuery := TLiteQuery.Create(nil);
try
// LiteConnection is either TLiteConnection already set up
LiteQuery.Connection := LiteConnection;

fi

en
end;

// set SQL query for update record
LiteQuery.SQL.Clear;

LiteQuery.SQL.Add('UPDATE dept SET dname = :dname, loc = :loc WHERE dept

// set parameters
LiteQuery.ParamByName('deptno') .AsInteger := 10;
LiteQuery.ParamByName('dname') .AsString := 'RESEARCH';
LiteQuery.ParamByName('loc').AsString := 'LOS ANGELES';
// execute query

g.Execute;

nally

g.Free;

di

[C++Builder]

{
TL

tr
{

iteQuery* LiteQuery = new TLiteQuery(NULL);
y

// LiteConnection is either TLiteConnection already set up
LiteQuery->Connection = LiteConnection;

// set SQL query for update record
LiteQuery->SQL->Clear();

LiteQuery->SQL->Add("UPDATE dept SET dname = :dname, loc =
// set parameters
LiteQuery->ParamByName('deptno")->AsInteger = 10;
LiteQuery->ParamByName('"dname")->AsString = "RESEARCH";
LiteQuery->ParamByName("loc")->AsString = "LOS ANGELES";

:loc WHERE de

© 2024 Enter your company name

Getting Started 70

// execute query
LiteQuery->Execute();

finally

LiteQuery->Free();

‘-v-'r-*-\l‘-v-‘

DML Statements As Plain Text

[Delphi]
var _
LiteQuery: TLiteQuery;
begin . .
LiteQuery := TLiteQuery.Create(nil);
try
// LiteConnecton 1is either TLiteConnection already set up
LiteQuery.Connection := LiteConnection;

// set SQL query for update record
LiteQuery.sQL.Clear;
LiteQuery.SQL.Add('UPDATE dept SET dname = ''RESEARCH'', Toc = ''LOS ANG
// execute query
LiteQuery.Execute;

finally
LiteQuery.Free;

end;

end;

[C++Builder]

TLiteQuery* LiteQuery = new TLiteQuery(NULL);
try

// LiteConnection is either TLiteConnection already set up
LiteQuery->Connection = LiteConnection;

// set SQL query for update record

LiteQuery->SQL->Clear();

LiteQuery->SQL->Add("UPDATE dept SET dname = 'RESEARCH', loc = 'LOS ANGE
// execute query

LiteQuery->Execute();

T_finaﬂy
LiteQuery->Free();
}
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

71

SQLite Data Access Components

3.8

Demo Projects

LiteDAC includes a number of demo projects that show off the main LiteDAC functionality and
development patterns.

The LiteDAC demo projects consist of one large project called LiteDACDemo with demos for
all main LiteDAC components, use cases, and data access technologies, and a number of
smaller projects on how to use LiteDAC in different IDEs and how to integrate LiteDAC with
third-party components.

Most demo projects are built for Delphi and Borland Developer Studio. There are only two
LiteDAC demos for C++Builder. However, the C++Builder distribution includes source code
for all the other demo projects as well.

Where are the LiteDAC demo projects located?

In most cases all the LiteDAC demo projects are located in "%LiteDAC%\Demos\".

In Delphi 2007 for Win32 under Windows Vista all the LiteDAC demo projects are located in
"My Documents\Devart\LiteDAC for Delphi 2007\Demos", for example "C:\Documents and
Settings\All Users\Documents\Devart\LiteDAC for Delphi 2007\Demos\".

The structure of the demo project directory depends on the IDE version you are using.

For most new IDEs the structure will be as follows.

Demos

LiteDACDemo [The main LiteDAC demo project]
ThirdParty
[A collection of demo projects on integration with third-
party components]
Miscellaneous

[Some other demo projects on design technologies]

LiteDACDemo is the main demo project that shows off all the LiteDAC functionality. The other
directories contain a number of supplementary demo projects that describe special use
cases. Alist of all the samples in the LiteDAC demo project and a description for the
supplementary projects is provided in the following section.

© 2024 Enter your company name

Getting Started 72

Note: This documentation describes ALL the LiteDAC demo projects. The actual demo
projects you will have installed on your computer depends on your LiteDAC version, LiteDAC
edition, and the IDE version you are using. The integration demos may require installation of

third-party components to compile and work properly.

Instructions for using the LiteDAC demo projects

To explore a LiteDAC demo project,

1. Launch your IDE.

2. In your IDE, choose File | Open Project from the menu bar.

3. Find the directory you installed LiteDAC to and open the Demos folder.

4. Browse through the demo project folders located here and open the project file of the demo
you would like to use.

5. Compile and launch the demo. If it exists, consult the ReadMe.xt file for more details.

The included sample applications are fully functional. To use the demos, you have to first set
up a connection to SQLite. You can do so by clicking on the "Connect" button.

Many demos may also use some database objects. If so, they will have two object
manipulation buttons, "Create" and "Drop". If your demo requires additional objects, click
"Create" to create the necessary database objects. When you are done with a demo, click
"Drop" to remove all the objects used for the demo from your database.

Note: The LiteDAC demo directory includes two sample SQL scripts for creating and
dropping all the test schema objects used in the LiteDAC demos. You can modify and

execute this script manually, if you would like. This will not change the behavior of the demos.

You can find a complete walkthrough for the main LiteDAC demo project in the Getting
Started topic. The other LiteDAC demo projects include a ReadMe.txt file with individual
building and launching instructions.

Demo project descriptions

LiteDACDemo

LiteDACDemo is one large project which includes three collections of demos.

© 2024 Enter your company name

SQLite Data Access Components

Working with components

A collection of samples that show how to work with the basic LiteDAC components.

General demos

A collection of samples that show off the LiteDAC technology and demonstrate some
ways to work with data.

SQLite-specific demos

A collection of samples that demonstrate how to incorporate SQLite features in database
applications.

LiteDACDemo can be opened from %LiteDAC%\Demos\LiteDACDemo\LiteDACDemo.dpr
(.bdsproj). The following table describes all demos contained in this project.

Working with Components

Name Description

Demonstrates how to customize the LiteDAC connect dialog.
Changes the standard LiteDAC connect dialog to a custom connect
dialog. The customized sample dialog is inherited from the TForm
class. CRDBGrid Demonstrates how to work with the TCRDBGrid
component. Shows off the main TCRDBGrid features, like filtering,
searching, stretching, using compound headers, and more.
Demonstrates how to work with the TCRDBGrid component. Shows
CRDBGrid off the main TCRDBGirid features, like filtering, searching, stretching,
using compound headers, and more.

Demonstrates how to backup data from tables with the TLiteDump
component. Shows how to use scripts created during back up to
restore table data. This demo lets you back up a table either by
specifying the table name or by writing a SELECT query.

Uses the TLiteLoader component to quickly load data into a server
Loader table. This demo also compares the two TLiteLoader data loading
handlers: GetColumnData and PutData.

Demonstrates working with TLiteQuery, which is one of the most
useful LiteDAC components. Includes many TLiteQuery usage
scenarios. Demonstrates how to execute queries in both standard
and NonBlocking mode and how to edit data and export it to XML
files.

Note: This is a very good introductory demo. We recommend starting

ConnectDialog

Dump

Query

here when first becoming familiar with LiteDAC.

© 2024 Enter your company name

Getting Started 74

Table

UpdateSQL

VirtualTable

Name

CachedUpdate
s

FilterAndIndex

MasterDetail

Lock

Name

Pictures

Uses TLiteSQL to execute SQL statements. Demonstrates how to
work in a separate thread, in standard mode, in NonBlocking mode,
and how to break long-duration query execution.

Demonstrates how to use TLiteTable to work with data from a single
table on the server without writing any SQL queries manually.
Performs server-side data sorting and filtering and retrieves results
for browsing and editing.

Demonstrates using the TLiteUpdateSQL component to customize
update commands. Lets you optionally use
T:Devart.SQLiteDAC.TLiteCommand and TLiteQuery objects for
carrying out insert, delete, query, and update commands.
Demonstrates working with the TVirtualTable component. This
sample shows how to fill virtual dataset with data from other datasets,
filter data by a given criteria, locate specified records, perform file
operations, and change data and table structure.

General Demos

Description

Demonstrates how to perform the most important tasks of working
with data in CachedUpdates mode, including highlighting
uncommitted changes, managing transactions, and committing
changes in a batch.

Demonstrates LiteDAC's local storage functionality. This sample
shows how to perform local filtering, sorting and locating by multiple
fields, including by calculated and lookup fields.

Uses LiteDAC functionality to work with master/detail relationships.
This sample shows how to use local master/detail functionality.
Demonstrates different kinds of master/detail linking, including linking
by SQL, by simple fields, and by calculated fields.

Demonstrates the recommended approach for managing
transactions with the TLiteConnection component. The
TLiteConnection interface provides a wrapper for SQLite server
commands like START TRANSACTION, COMMIT, ROLLBACK.

SQLite-specific Demos

Description

Uses LiteDAC functionality to work with graphics. The sample
demonstrates how to retrieve binary data from PgSQL server
database and display it on visual components. Sample also shows
how to load and save pictures to files and to the database.

© 2024 Enter your company name

75 SQLite Data Access Components
Uses LiteDAC functionality to work with text. The sample
demonstrates how to retrieve text data from SQL Server database
Text . . :
and display it on visual components. Sample also shows how to load
and save text to files and to the database.
Functions Uses LiteDAC functionality to work with SQLite functions.
Functions The sample demonstrates how to define custom functions for future
use in SQL-statements, how to overload user-defined functions and
how to override built-in SQLite functions.
Supplementary Demo Projects
LiteDAC also includes a number of additional demo projects that describe some special use
cases, show how to use LiteDAC in different IDEs and give examples of how to integrate it
with third-party components. These supplementary LiteDAC demo projects are sorted into
subfolders in the %LiteDAC%\Demos\ directory.
Location Name Description
Demonstrates creating and loading
DLLs for LiteDAC-based projects.
This demo project consists of two
parts - an Pg_DlIl project that creates
a DLL of a form that sends a query
Miscellaneous DIl to the server and displays its results,
and an Pg_Exe project that can be
executed to display a form for
loading and running this DLL. Allows
you to build a dll for one LiteDAC-
based project and load and test it
from a separate application.
LiteDACDemo LiteDACDe [Win32 version ofthe main LiteDAC
mo demo project - see above]
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.
3.9 Deployment

LiteDAC applications can be built and deployed with or without run-time libraries. Using run-
time libraries is managed with the "Build with runtime packages" check box in the Project

Options dialog box.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Getting Started 76

Deploying Windows applications built without run-time
packages

You do not need to deploy any files with LiteDAC-based applications built without run-time
packages, provided you are using a registered version of LiteDAC.

You can check if your application does not require run-time packages by making sure the
"Build with runtime packages" check box is not selected in the Project Options dialog box.

Trial Limitation Warning

If you are evaluating deploying Windows applications with LiteDAC Trial Edition, you will need
to deploy the following DAC BPL files:

dacXX.bpl always
litedacXX.bpl |always

and their dependencies (required IDE BPL files) with your application, even if it is built without
run-time packages:

rtIXX.bpl always
dbrtlXX.bpl always
veldbXXX.bpl |always

Deploying Windows applications built with run-time
packages

You can set your application to be built with run-time packages by selecting the "Build with
runtime packages" check box in the Project Options dialog box before compiling your
application.

In this case, you will also need to deploy the following BPL files with your Windows
application:

dacXX.bpl always

litedacXX.bpl |always

dacvcIXX.bpl |if your application uses the LiteDACVcl unit
litedacvcIXX.bpl |if your application uses the LiteDACVcl unit
crcontrolsXX.bpl|if your application uses the CRDBGrid component

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

77

SQLite Data Access Components

Devart. All Rights
Reserved.

Using LiteDAC

This section describes basics of using SQLite Data Access Components

e Connecting in Direct Mode

¢ Disabling Direct Mode

e Updating Data with LiteDAC Dataset Components

¢ Master/Detail Relationships

e Data Type Mapping

¢ Data Encryption

e Database File Encryption

¢ Disconnected Mode

¢ Increasing Performance

e Working in an Unstable Network

e Macros

e DataSet Manager

e DBMonitor
e Writing GUI Applications with LiteDAC

e Connection Pooling

¢ 64-bit Development with Embarcadero RAD Studio XE2

e Database Specific Aspects of 64-bit Development

e Demo Projects

¢ Deployment

© 1997-2024
Devart. All Rights Request Support DAC Forum

Reserved.

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 78

4.1

Connecting in Direct Mode

LiteDAC Professional Edition allows to connect to SQLite in two ways: with using SQLite
client library, or in Direct mode by linking SQLite library statically in an application. The chosen
connection mode is regulated by the TLiteConnection.Options.Direct property.

LiteDAC connection modes

By default, LiteDAC, like most applications that work with SQLite, uses the SQLite client
library (sqlite3.dll for Windows, libsqlite3.dylib for MacOS and libsqlite3.so for Linux) to
connect to a SQLite database. This is referred to as connecting in Client mode, and it is the
usual way to develop SQLite applications with a third-generation language. All SQLite API
routines are stored in external library, so the executables for applications, that work using
SQLite client, are a bit smaller. However, working in Client mode requires SQLite client library
to be present on target workstations. It's either may cause compatibility issues of your
application and the existent SQLite library, or causes a need to deploy a compatible version of
the SQLite client library with your application.

LiteDAC Professional Edition includes an option to connect to SQLite directly, using the
embedded SQLite3 engine. This is referred to as connecting in Direct mode. Connecting in
Direct mode does not require SQLite client software to be present on target machines and
saves your application from compatibility problems. Furthermore, our embedded SQLite3
engine supports built-in database encryption, that gives an ability to work with encrypted

databases in Direct mode. The only inconvenience is that the application size increases
slightly (about 350 KB).

Setting up Direct mode connections

To connect to SQLite database using Direct mode, set up your Direct property to True. This
is all you need to do to enable Direct mode connections in your application. You do not have
to rewrite other parts of your code.

To return to working through SQLite client software, just set the Direct property to False.

Note: Direct mode is available in LiteDAC Professional Edition, and can be evaluated with

LiteDAC Trial Edition.

Advantages of using Direct mode

© 2024 Enter your company name

79

SQLite Data Access Components

4.2

¢ Using SQLite client software is not required.
e Application compatibility problems are eliminated.

¢ Built-in database encryption support.

Connecting in Direct mode is managed transparently by the TLiteConnection object, and you

can easily return to connecting via SQLite client library in Client mode at any time, if the
restrictions above become critical for you.

Disabling Direct Mode

If you don't plan to use Direct Mode in your application, you can permanently disable it.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Disabling Direct Mode

Disabling Direct Mode

As described in the Connecting in Direct Mode article, Direct Mode usage leads to increased

size of the application executable file. If you don't plan to use Direct Mode in your application,
you can permanently disable it, i.e., the SQLite engine will not be embedded into the
executable file. For this, open the Project -> Options menu in the IDE, select the Delphi
Compiler node in the options list, and add a NOSTATIC value in the Conditional defines
property. Also, add path to the [LiteDAC installation folder]\Source folder in the Search path
property. Then build the project.

On disabling Direct Mode, the executable file size decreases. The application will be able to
work with SQLite using the client library only. On attempt to set the
TLiteConnectionOptions.Direct property to True, an exception will be raised: 'Direct Mode

disabled'

© 1997-2024

Devart. All Rights ~ RequestSupport DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 80

4.3

Reserved.

Updating Data with LiteDAC Dataset Components

LiteDAC dataset components which descend from TCustomDADataSet provide different

ways for reflecting local changes on the database.

The first approach is to use automatic generation of update SQL statements. When using this
approach you should specify Key Fields (the KeyFields property) to avoid requesting
KeyFields from the database. When SELECT statement uses multiple tables, you can use
the UpdatingTable property to specify which table will be updated. If UpdatingTable is blank,
the first table of the FROM clause will be used. In the most cases LiteDAC needs an
additional information about updating objects. So LiteDAC executes additional queries to the
database. This helps to generate correct updating SQL statements but may result in
performance decrease. To disable these additional queries, set the ExtendedFieldsInfo option
to False.

Another approach is to set update SQL statements using SQLInsert, SQLUpdate, and

SQLDelete properties. Use them to specify SQL statements that will be used for
corresponding data modifications. It is useful when generating data modification statements is
not possible or you need to execute some specific statements. You may also assign the
TLiteUpdateSQL component to the UpdateObject property. TLiteUpdateSQL component

holds all updating SQL statements in one place. You can generate all these SQL statements
using LiteDAC design time editors. For more careful customization of data update operations
you can use InsertObject, ModifyObject and DeleteObject properties of the TLiteUpdateSQL

component.

See Also
e TLiteQuery

e TlLiteTable
e TLiteUpdateSQL

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

81

SQLite Data Access Components

4.4

Master/Detail Relationships

Master/detail (MD) relationship between two tables is a very widespread one. So it is very
important to provide an easy way for database application developer to work with it. Lets
examine how LiteDAC implements this feature.

Suppose we have classic MD relationship between "Department" and "Employee" tables.
"Department" table has field Dept_No. Dept_No is a primary key.

"Employee" table has a primary key EmpNo and foreign key Dept_No that binds "Employee"
to "Department”.

It is necessary to display and edit these tables.

LiteDAC provides two ways to bind tables. First code example shows how to bind two
TCustomLiteDataSet components (TLiteQuery or TLiteTable) into MD relationship via
parameters.

procedure TForml.FormlCreate(Sender: TObject);
var
Master, Detail: TLiteQuery;
MasterSource: TDataSource;
begin
// create master dataset
Master := TLiteQuery.Create(Self);
Master.SQL.Text := 'SELECT * FROM Department';
// create detail dataset
Detail := TLiteQuery.Create(Self);
Detail.SQL.Text := 'SELECT * FROM Employee WHERE Dept_No = :Dept_No'
// connect detail dataset with master via TDataSource component
MastersSource := TDataSource.Create(Self);
MasterSource.DataSet := Master;
Detail.MasterSource := MasterSource;
// open master dataset and only then detail dataset
Master.Open;
Detail.Open;
end;

Pay attention to one thing: parameter name in detail dataset SQL must be equal to the field
name in the master dataset that is used as foreign key for detail table. After opening detail
dataset always holds records with Dept_No field value equal to the one in the current master
dataset record.

There is an additional feature: when inserting new records to detail dataset it automatically fills
foreign key fields with values taken from master dataset.

Now suppose that detail table "Department" foreign key field is named DepLink but not

© 2024 Enter your company name

Using LiteDAC 82

Dept_No. In such case detail dataset described in above code example will not autofill
DeplLink field with current "Department".Dept_No value on insert. This issue is solved in
second code example.

procedure TForml.FormlCreate(Sender: TObject);
var

Master, Detail: TLiteQuery;

MasterSource: TDataSource;
begin

// create master dataset

Master := TLiteQuery.Create(Self);

Master.SQL.Text := 'SELECT * FROM Department';
// create detail dataset

Detail := TLiteQuery.Create(Self);
Detail.SQL.Text := 'SELECT * FROM Employee';
// setup MD

Detail.MasterFields 'Dept_No'; // primary key in Department
Detail.DetailFields 'DepLink'; // foreign key in Employee
// connect detail dataset with master via TDataSource component

MastersSource := TDataSource.Create(Self);
MasterSource.DataSet := Master;
Detail.MasterSource := MasterSource;

// open master dataset and only then detail dataset
Master.Open;
Detail.Open;

end;

In this code example MD relationship is set up using MasterFields and DetailFields properties.
Also note that there are no WHERE clause in detail dataset SQL.

To defer refreshing of detail dataset while master dataset navigation you can use DetailDelay
option.

Such MD relationship can be local and remote, depending on the
TCustomDADataSet.Options.LocalMasterDetail option. If this option is set to True, dataset

uses local filtering for establishing master-detail relationship and does not refer to the
database. Otherwise detail dataset performs query each time when record is selected in
master dataset. Using local MD relationship can reduce database calls number and save
server resources. It can be useful for slow connection. CachedUpdates mode can be used

for detail dataset only for local MD relationship. Using local MD relationship is not
recommended when detail table contains too many rows, because in remote MD relationship
only records that correspond to the current record in master dataset are fetched. So, this can
decrease network traffic in some cases.

See Also

© 2024 Enter your company name

83

SQLite Data Access Components

4.5

e TCustomDADataSet.Options

e TMemDataSet.CachedUpdates

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Data Type Mapping

Overview

Data Type Mapping is a flexible and easily customizable gear, which allows mapping
between DB types and Delphi field types.

In this article there are several examples, which can be used when working with all supported
DBs. In order to clearly display the universality of the Data Type Mapping gear, a separate DB
will be used for each example.

Data Type Mapping Rules

In versions where Data Type Mapping was not supported, LiteDAC automatically set
correspondence between the DB data types and Delphi field types. In versions with Data
Type Mapping support the correspondence between the DB data types and Delphi field types
can be set manually.

Here is the example with the numeric type in the following table of a SQLite database:

CREATE TABLE NUMERIC_TYPES

ID INTEGER PRIMARY KEY AUTOINCREMENT,
VALUE1 NUMERIC(4,0),
VALUE2 NUMERIC(10,0),
VALUE3 NUMERIC(15,0),
VALUE4 NUMERIC(5S,2),
VALUE5 NUMERIC(10,4),
VALUE6 NUMERIC(15,6)

And Data Type Mapping should be used so that:

¢ the numeric fields with Scale=0 in Delphi would be mapped to one of the field types:
TSmallintField, TintegerField or TlargeintField, depending on Precision

e to save precision, the numeric fields with Precision>=10 and Scale<= 4 would be mapped

to TBCDField

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 84

¢ and the numeric fields with Scale>= 5 would be mapped to TFMTBCDField.

The above in the form of a table:

Default
SQLite data type Delphi field

type
NUMERIC(4,0) ftFloat
NUMERIC(10,0) ftFloat
NUMERIC(15,0) ftFloat
NUMERIC(5,2) ftFloat
NUMERIC(10,4) ftFloat
NUMERIC(15,6) ftFloat

Destination
Delphi field
type
ftSmallint
ftinteger
ftLargeint
ftFloat
ftBCD
ftFMTBCD

To specify that numeric fields with Precision <= 4 and Scale = 0 must be mapped to

ftSmallint, such a rule should be set:

uses
LiteDataTypeMap;

var
DBType: word;
MinPrecision: Integer;
MaxPrecision: Integer;
MinScale: Integer;

MaxScale: Integer;
FieldType: TfieldType;

begin
DBType = liteNumeric;
MinPrecision := 0;
MaxPrecision := 4;
MinScale = 0
MaxScale = 0;
FieldType = ftSmallint;

LiteConnection.DataTypeMap.AddDBTypeRule(DBType, MinPrecision, MaxPrecisio

end;
This is an example of the detailed rule setting, and it is made for maximum
visualization.Usually, rules are set much shorter, e.g. as follows:

// clear existing rules
LiteConnection.DataTypeMap.Clear;

// rule for numeric(4,0)
LiteConnection.DataTypeMap.AddDBTypeRule(1iteNumeric, O,
// rule for numeric(10,0)
LiteConnection.DataTypeMap.AddDBTypeRule(1iteNumeric, 5,
// rule for numeric(15,0)
LiteConnection.DataTypeMap.AddDBTypeRule(liteNumeric, 11
// rule for numeric(5,2)

4’ Ol
10, O,
, rlAny, O,

© 2024 Enter your company name

SQLite Data Access Components

LiteConnection.DataTypeMap.AddDBTypeRule(liteNumeric, O, 9, 1, rlany, f
// rule for numeric(10,4)
LiteConnection.DataTypeMap.AddDBTypeRule(liteNumeric, 10, rlAny, 1, 4, f

// rule for numeric(15,6)
LiteConnection.DataTypeMap.AddDBTypeRule(TliteNumeric, 10, rlAny, 5, rlAny, f

Rules order

When setting rules, there can occur a situation when two or more rules that contradict to
each other are set for one type in the database. In this case, only one rule will be applied —
the one, which was set first.

For example, there is a table in a SQLite database:

CREATE TABLE NUMBER_TYPES

(
ID INTEGER PRIMARY KEY AUTOINCREMENT,

VALUE1 NUMBER(5,2),
VALUE2 NUMBER(10,4),
VALUE3 NUMBER(15,6)
)

TBCDField should be used for NUMBER(10,4), and TFMTBCDField - for NUMBER(15,6)
instead of default fields:

SQLite data type Default Delphi field type Destination field type
NUMBER(5,2) ftFloat ftFloat

NUMBER(10,4) ftFloat fiBCD

NUMBER(15,6) ftFloat ftFMTBCD

If rules are set in the following way:

LiteConnection.DataTypeMap.Clear;

LiteConnection.DataTypeMap.AddDBTypeRule(liteNumber, O, 9, rlAny, rlAny,
LiteConnection.DataTypeMap.AddDBTypeRule(liteNumber, 0, rlAny, 0, 4,
LiteConnection.DataTypeMap.AddDBTypeRule(1iteNumber, 0, rlAny, 0, rlAny,

it will lead to the following result:

SQLite data type Delphi field type
NUMBER(5,2) ftFloat
NUMBER(10,4) ftBCD
NUMBER(15,6) ftFMTBCD

But if rules are set in the following way:

© 2024 Enter your company name

Using LiteDAC 86

LiteConnection.DataTypeMap.Clear;

LiteConnection.DataTypeMap.AddDBTypeRule(liteNumber, 0, rlAny, 0, rlAny,
LiteConnection.DataTypeMap.AddDBTypeRule(1iteNumber, 0, rlAny, 0, 4,
LiteConnection.DataTypeMap.AddDBTypeRule(1iteNumber, O, 9, rlAny, rlAny,

it will lead to the following result:

SQLite data type Delphi field type
NUMBER(5,2) ftFMTBCD
NUMBER(10,4) ftFMTBCD
NUMBER(15,6) ftFMTBCD

This happens because the rule

LiteConnection.DataTypeMap.AddDBTypeRule(1iteNumber, 0, rlAny, 0, rlAny, ftF

will be applied for the NUMBER fields, whose Precision is from 0 to infinity, and Scale is from
0 to infinity too. This condition is met by all NUMBER fields with any Precision and Scale.

When using Data Type Mapping, first matching rule is searched for each type, and it is used
for mapping. In the second example, the first set rule appears to be the first matching rule for
all three types, and therefore the ftFMTBCD type will be used for all fields in Delphi.

If to go back to the first example, the first matching rule for the NUMBER(5,2) type is the first
rule, for NUMBER(10,4) - the second rule, and for NUMBER(15,6) - the third rule. So in the
first example, the expected result was obtained.

So it should be remembered that if rules for Data Type Mapping are set so that two or more
rules that contradict to each other are set for one type in the database, the rules will be
applied in the specifed order.

Defining rules for Connection and Dataset

Data Type Mapping allows setting rules for the whole connection as well as for each DataSet
in the application.

For example, such table is created in a SQLite database:

CREATE TABLE PERSON

© 2024 Enter your company name

87

SQLite Data Access Components

(

ID INTEGER PRIMARY KEY AUTOINCREMENT,
FIRSTNAME VARCHAR (20) ,

LASTNAME VARCHAR (30),

GENDER_CODE VARCHAR (1),
)BIRTH_DTTM DATETIME

It is exactly known that the BIRTH_DTTM field contains birth day, and this field should be
ftDate in Delphi, and not ftDateTime. If such rule is set:

LiteConnection.DataTypeMap.Clear; _ _
LiteConnection.DataTypeMap.AddDBTypeRule(liteDateTime, ftDate);

all DATETIME fields in Delphi will have the ftDate type, that is incorrect. The ftDate type was
expected to be used for the DATETIME type only when working with the person table. In this
case, Data Type Mapping should be set not for the whole connection, but for a particular
DataSet:

LiteQuery.DataTypeMap.Clear;
LiteQuery.DataTypeMap.AddDBTypeRule(1iteDateTime, ftDate);

Or the opposite case. For example, DATETIME is used in the application only for date
storage, and only one table stores both date and time. In this case, the following rules setting
will be correct:

LiteConnection.DataTypeMap.Clear;
LiteConnection.DataTypeMap.AddDBTypeRule(liteDateTime, ftDate);
LiteQuery.DataTypeMap.Clear;
LiteQuery.DataTypeMap.AddDBTypeRule(liteDateTime, ftDateTime);

In this case, in all DataSets for the DATETIME type fields with the ftDate type will be created,
and for LiteQuery - with the ftDateTime type.

The point is that the priority of the rules set for the DataSet is higher than the priority of the
rules set for the whole connection. This allows both flexible and convenient setting of Data
Type Mapping for the whole application. There is no need to set the same rules for each
DataSet, all the general rules can be set once for the whole connection. And if a DataSet with
an individual Data Type Mapping is necessary, individual rules can be set for it.

Rules for a particular field

Sometimes there is a need to set a rule not for the whole connection, and not for the whole
dataset, but only for a particular field.

© 2024 Enter your company name

Using LiteDAC 88

e.g. there is such table in a SQLite database:
CREATE TABLE ITEM

ID INTEGER PRIMARY KEY AUTOINCREMENT,
NAME CHAR(50),

GUID CHAR(38)

)

The GUID field contains a unique identifier. For convenient work, this identifier is expected to
be mapped to the TGuidField type in Delphi. But there is one problem, if to set the rule like
this:

LiteQuery.DataTypeMap.Clear;
LiteQuery.DataTypeMap.AddDBTypeRule(litecChar, ftGuid);

then both NAME and GUID fields will have the ftGuid type in Delphi, that does not correspond

to what was planned. In this case, the only way is to use Data Type Mapping for a particular
field:

LiteQuery.DataTypeMap.AddFieldNameRule('GUID', ftGuid);

In addition, it is important to remember that setting rules for particular fields has the highest
priority. If to set some rule for a particular field, all other rules in the Connection or DataSet will
be ignored for this field.

lgnoring conversion errors

Data Type Mapping allows mapping various types, and sometimes there can occur the
problem with that the data stored in a DB cannot be converted to the correct data of the
Delphi field type specified in rules of Data Type Mapping or vice-versa. In this case, an error
will occur, which will inform that the data cannot be mapped to the specified type.

For example:

Database value Destination field type Error

. . String cannot be converted

text value ftinteger o Integer

1000000 ftSmallint Value is out of range

151 finteger pannot convert float to
integer

But when setting rules for Data Type Mapping, there is a possibility to ignore data conversion

© 2024 Enter your company name

89

SQLite Data Access Components

4.6

errors:

LiteConnection.DataTypeMap.AddDBTypeRule(ibcvarchar, ftInteger, True);

In this case, the correct conversion is impossible. But because of ignoring data conversion
errors, Data Type Mapping tries to return values that can be set to the Delphi fields or DB
fields depending on the direction of conversion.

Database value DR 2 Result Result description

type
0 will be returned if
'text value' ftinteger 0 the text cannot be
converted to number

32767 is the max

1000000 ftsSmallint 32767 valqe that can be
assigned to the

Smallint data type

15,1 was truncated to

15,1 ftinteger 15 .
an integer value

Therefore ignoring of conversion errors should be used only if the conversion results are
expected.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Data Encryption

LiteDAC has built-in algorithms for data encryption and decryption. To enable encryption, you
should attach the TCREncryptor component to the dataset, and specify the encrypted fields.
When inserting or updating data in the table, information will be encrypted on the client side in
accordance with the specified method. Also when reading data from the database, the
components decrypt the data in these fields "on the fly".

For encryption, you should specify the data encryption algorithm (the EncryptionAlgorithm

property)and password (the Password property). On the basis of the specified password, the
key is generated, which encrypts the data. There is also a possibility to set the key directly
using the SetKey method.

When storing the encrypted data, in addition to the initial data, you can also store additional
information: the GUID and the hash. (The method is specified in the

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 90

TCREnNcryptor.DataHeader property).

If data is stored without additional information, it is impossible to determine whether the data
is encrypted or not. In this case, only the encrypted data should be stored in the column,
otherwise, there will be confusion because of the inability to distinguish the nature of the data.
Also in this way, the similar source data will be equivalent in the encrypted form, that is not
good from the point of view of the information protection. The advantage of this method is the
size of the initial data equal to the size of the encrypted data.

To avoid these problems, it is recommended to store, along with the data, the appropriate
GUID, which is necessary for specifying that the value in the record is encrypted and it must
be decrypted when reading data. This allows you to avoid confusion and keep in the same
column both the encrypted and decrypted data, which is particularly important when using an
existing table. Also, when doing in this way, a random initializing vector is generated before
the data encryption, which is used for encryption. This allows you to receive different results
for the same initial data, which significantly increases security.

The most preferable way is to store the hash data along with the GUID and encrypted
information to determine the validity of the data and verify its integrity. In this way, if there was
an attempt to falsify the data at any stage of the transmission or data storage, when
decrypting the data, there will be a corresponding error generated. For calculating the hash
the SHA1 or MDS5 algorithms can be used the HashAlgorithm property).

The disadvantage of the latter two methods - additional memory is required for storage of the
auxiliary information.

As the encryption algorithms work with a certain size of the buffer, and when storing the
additional information it is necessary to use additional memory, TLiteEncryptor supports
encryption of string or binary fields only (ftString, ftWideString, ftBytes, ftVarBytes, ftBlob,
ftMemo, ftWideMemo). If encryption of string fields is used, firstly, the data is encrypted, and
then the obtained binary data is converted into hexadecimal format. In this case, data storage
requires two times more space (one byte = 2 characters in hexadecimal).

Therefore, to have the possibility to encrypt other data types (such as date, number, etc.), it is
necessary to create a field of the binary or BLOB type in the table, and then convert it into the
desired type on the client side with the help of data mapping.

It should be noted that the search and sorting by encrypted fields become impossible on the

© 2024 Enter your company name

91

SQLite Data Access Components

4.7

server side. Data search for these fields can be performed only on the client after decryption
of data using the Locate and LocateEx methods. Sorting is performed by setting the

TMemDataSet.IndexFieldNames property.

Example.

Let's say there is an employee list of an enterprise stored in the table with the following data:
full name, date of employment, salary, and photo. We want all these data to be stored in the
encrypted form. Write a script for creating the table:

CREATE TABLE EMP (

EMPNO INTEGER PRIMARY KEY AUTOINCREMENT,

ENAME VARBINARY (2000),
HIREDATE VARBINARY (200),

SAL VARBINARY (200),
FOTO VARBINARY
)

As we can see, the fields for storage of the textual information, date, and floating-point
number are created with the VARBINARY type. This is for the ability to store encrypted
information, and in the case of the text field - to improve performance. Write the code to
process this information on the client.

LiteQuery.SQL.Text := 'SELECT * FROM EMP';
LiteQuery.Encryption.Encryptor : = LiteEncryptor;
LiteQuery.Encryption.Fields : = 'ENAME, HIREDATE, SAL, FOTO';
LiteEncryptor.Password : = '11111"';

LiteQuery.DataTypeMap.AddFieldNameRule('ENAME', ftString);
LiteQuery.DataTypeMap.AddFieldNameRule('HIREDATE', ftDateTime);
LiteQuery.DataTypeMap.AddFieldNameRule('SAL', ftFloat);
LiteQuery.Open;

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Database File Encryption

What constitutes Database File Encryption

The SQLite architecture provides the functionality for work with encrypted databases. This
means that encoding/decoding is applied to a database file, in the moment of execution of the
file read/write operations. This is a low-level encryption "on the fly", it is implemented at the
level of the SQLite client library and is completely transparent to the applications working with

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 92

the database.

But, the fact is that in the client libraries available at the official SQLite website, the algorithms
of database file encryption are not implemented. Therefore, usually, to work with encrypted
databases one has to either use a custom-buiilt client library with encryption support, or create
an own library from the source code, available on the SQLite website.

LiteDAC functionality for Database File Encryption

LiteDAC provides built-in capabilities for Database File Encryption, which becomes available
when working in Direct mode. Database File Encryption, built in LiteDAC, allows to:

e encrypt a database;

e create a new encrypted database;

e connect and work with the encrypted database;

¢ change the encryption key of the encrypted database;

e decryp the encrypted database.

To encrypt/decrypt the database file, one of the following encryption algorithms can be used:

e the Triple DES encryption algorithm;

e the Blowfish encryption algorithm;

e the AES encryption algorithm with a key size of 128 bits;
¢ the AES encryption algorithm with a key size of 192 bits;
e the AES encryption algorithm with a key size of 256 bits;
e the Cast-128 encryption algorithm;

¢ the RC4 encryption algorithm.

Important note: there are no strict standardized requirements for implementation of
database file encryption in SQLite. Therefore, implementation of Database File Encryption in
LiteDAC is incompatible with other implementations. When using LiteDAC, it is possible to
work only with encrypted databases, created with the use of LiteDAC. In turn, no third-party
application will be able to work with encrypted databases, created with the use of LiteDAC

The difference between Database File Encryption and

© 2024 Enter your company name

93

SQLite Data Access Components

Data Encryption.

The functionality of Data Encryption, which is realized with the help of the

P:Devart.SQLiteDac.TLiteEncryptor component, allows to encrypt individual fields in
database tables. In this case, the database itself is not encrypted. l.e. on the one hand, the
information in this database (with the exception of the encrypted fields) is easily accessible for
viewing by any SQLite DB-tools. On the other hand, such database is more simple in terms
of maodification of data structures.

Database File Encryption encrypts all the data file. Both structure and information on such
database becomes unavailable for any third-party applications. An indisputable advantage is
the increased level of secrecy of information. The disadvantage is that, for making any
changes in the structure of the database, developers will have to use only LiteDAC.

Both Database File Encryption and Data Encryption methods are not mutually exclusive and
can be used at the same time.

The usage of Database File Encryption in LiteDAC

To control database encryption in LiteDAC, the following properties and methods of the
P:Devart.SQLiteDac.TLiteConnection component are used:

¢ The TLiteConnection.Options.EncryptionAlgorithm property - specifies the encryption
algorithm that will be used to connect to an encrypted database, or to create a new
encrypted database.

¢ The TLiteConnection.EncryptionKey property - specifies the encryption key that will be used
to connect to an encrypted database, or to create a new encrypted database.

¢ The TLiteConnection.EncryptDatabase method - is used to change the encryption key in an

encrypted database, or to decrypt the database.

Encrypt a database

The following example shows how to encrypt an existing database:

LiteConnection.Database := 'C:\sqlite.db3'; // the name of the
LiteConnection.Options.ForceCreateDatabase := False; // to check that t
LiteConnection.Options.Direct := True; // database file e
LiteConnection.Options.EncryptionAlgorithm := TeBlowfish; // the database wi
LiteConnection.Encryptionkey := ''; // no encryption k
LiteConnection.Open; // connect to the

© 2024 Enter your company name

Using LiteDAC

LiteConnection.EncryptDatabase ('11111'); //

Creating of a new encrypted database

94

The following example shows creating a new encrypted database:

LiteConnection.

theConnectjon
LiteConnection
LiteConnection

LiteConnection

Database :=
True;

EncryptionKey := "'11111";

.0pen;

'C:\sqlite_encoded.db3"';
.Options.ForceCreateDatabase
.Options.Direct :=
.Options.EncryptionAlgorithm
LiteConnection.

:= True;

//
//

//
//

Connecting to an encrypted database

To connect to an existing encrypted database, the following should be performed:

LiteConnection.

LiteConnection
theConnectjon
LiteConnection

LiteConnection

Database :=
:= True;

EncryptionKey := "'11111';

.open;

'C:\sqglite_encoded.db3"’;
.Options.ForceCreateDatabase
.Options.Direct
.Options.EncryptionAlgorithm
LiteConnection.

:= False;

//
//

//

Changing the encryption key for the database

To change the encryption key in the encrypted database, you must perform the following:

LiteConnection.

theConnectjon
LiteConnection
LiteConnection

Database :=

True;

'C:\sglite_encoded.db3"';
.Options.ForceCreateDatabase
.Options.Direct :=
.Options.EncryptionAlgorithm

:= False;

//
//

'11111°; //
//

//

LiteConnection.EncryptionKey :=
LiteConnection.Open;
LiteConnection.EncryptDatabase ('22222');

encrypt the dat

the name of the
this will allow

// database file e
:= leBlowfish; //

the database wi
the encryption
create and conn

the name of the
to check that t

// database file e
:= leBlowfish; //
// the encryption

the encryption

connect to the

the name of the
to check that t

// database file e
:= leBlowfish; //

the encryption
the encryption
connect to the
change the data

After changing the encryption key, the database connection remains open and the further

work with the database can continue. However, if disconnected from the database and for

subsequent connection, the new value of the encryption key should be assigned to the

LiteConnection.EncryptionKey property.

Decryption of the database

The encrypted database can be decrypted, after that it becomes available for viewing and

editing in third-party applications. To decrypt the database you must first connect to it, as

shown in the examples above, and then execute the LiteConnection.EncryptDatabase(")

method, specifying an empty string as a new key.

© 2024 Enter your company name

95

SQLite Data Access Components

4.8

PRAGMA Encryption

e The PRAGMA ENCRYPTION statement specifies the encryption algorithm that will be used
to encrypt a previously connected unencrypted database. The statement can be executed
only after the database is connected. The statement must not be used on databases
encrypted with a different encryption algorithm. The pragma values are the same as the
EncryptionAlgorithm attribute values.

Example:

PRAGMA ENCRYPTION=TripleDES;

The statement can be executed from any database tool that uses Devart LiteDAC, or with the
SQLExecuteDirect API function.

e The PRAGMA REKEY statement — is used to encrypt unencrypted database, to change the
encryption key of an encrypted database or to decrypt a database. The statement can be
executed only after the database is connected.

Example of encryption or changing an encryption key:

PRAGMA REKEY='mynewkey';

Example of decryption:

PRAGMA REKEY='"";

The statements can be executed from any database tool that uses Devart LiteDAC, or with
the SQLExecuteDirect API function.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Disconnected Mode

In disconnected mode a connection opens only when it is required. After performing all
database calls connection closes automatically until next server call is required. Datasets
remain opened when connection closes. Disconnected Mode may be useful for saving server
resources and operating in an unstable or expensive network. Drawback of using
disconnected mode is that each connection establishing requires some time for authorization.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 96

If connection is often closed and opened it can slow down application work. We recommend
to use pooling to solve this problem. For additional information see
TCustomDAConnection.Pooling.

To enable disconnected mode set TCustomDAConnection.Options.DisconnectedMode to
True.

In disconnected mode a connection is opened for executing requests to the database (if it
was not opened already) and is closed automatically if it is not required any more. If the
connection was explicitly opened (the Connect method was called or the Connected property
is set to False explicitly.

The following settings are recommended to use for working in disconnected mode:

TDataSet.Cachedupdates = True
TCustomDADataSet.FetghA11 = True _
TCustomDADataSet.Options.LocalMasterDetail = True

These settings minimize the number of requests to the database.

Disconnected mode features

If you perform a query with the FetchAll option set to True, connection closes when all data is
fetched if it is not used by someone else. If the FetchAll option is set to false, connection does
not close until all data blocks are fetched.

If explicit transaction was started, connection does not close until the transaction is
committed or rolled back.

If the query was prepared explicitly, connection does not close until the query is unprepared or
its SQL text is changed.

See Also

e TCustomDAConnection.Options

e FetchAll
e TLiteQuery.LockMode

e TCustomDAConnection.Pooling

e TCustomDAConnection.Connect

e TCustomDAConnection.Disonnect

© 2024 Enter your company name

97

SQLite Data Access Components

4.9

e \Working in unstable network

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Batch Operations

Data amount processed by modern databases grows steadily. In this regard, there is an
acute problem — database performance. Insert, Update and Delete operations have to be
performed as fast as possible. Therefore Devart provides several solutions to speed up
processing of huge amounts of data. So, for example, insertion of a large portion of data to a
DB is supported in the TLiteLoader. Unfortunately, TLiteLoader allows to insert data only — it
can’'t be used for updating and deleting data.

The new version of Devart Delphi Data Access Components introduces the new mechanism
for large data processing — Batch Operations. The point is that just one parametrized Modify
SQL query is executed. The plurality of changes is due to the fact that parameters of such a
query will be not single values, but a full array of values. Such approach increases the speed
of data operations dramatically. Moreover, in contrast to using TLiteLoader, Batch operations
can be used not only for insertion, but for modification and deletion as well.

Let’s have a better look at capabilities of Batch operations with an example of the
BATCH_TEST table containing attributes of the most popular data types.

Batch_Test table generating scripts
CREATE TABLE BATCH_TEST

1D INTEGER,
F_INTEGER INTEGER,
F_FLOAT FLOAT,
F_STRING VARCHAR(250),
F_DATE DATETIME,
5 CONSTRAINT PK_BATCH_TEST PRIMARY KEY (ID)

Batch operations execution
To insert records into the BATCH_TEST table, we use the following SQL query:

INSERT INTO BATCH_TEST VALUES (:ID, :F_INTEGER, :F_FLOAT, :F_STRING,

When a simple insertion operation is used, the query parameter values look as follows:

© 2024 Enter your company name

- F_DAT

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 98
Parameters
:ID ‘F INTEGER ‘F FLOAT ‘F STRING ‘F DATE
1 100 2.5 ‘String Value 1' |01.09.2015

After the query execution, one record will be inserted into the BATCH_TEST table.

When using Batch operations, the query and its parameters remain unchanged. However,
parameter values will be enclosed in an array:

Parameters

:ID ‘F INTEGER ‘F FLOAT F STRING :F DATE

1 100 2.5 ‘String Value 1' /01.09.2015
2 200 3.15 ‘String Value 2' /01.01.2000
3 300 5.08 ‘String Value 3' /09.09.2010
4 400 7.5343 ‘String Value 4' |10.10.2015
5 500 0.4555 ‘String Value 5' /01.09.2015

Now, 5 records are inserted into the table at a time on query execution.

How to implement a Batch operation in the code?

Batch INSERT operation sample
Let’s try to insert 1000 rows to the BATCH_TEST table using a Batch Insert operation:

var
i: Integer;

begin
// describe the sSQL query
LiteQueryl.SQL.Text := 'INSERT INTO BATCH_TEST VALUES (:ID,
// define the parameter types passed to the query :

:F_INTEGER, :F

LiteQueryl.Params[0] .DataType := ftInteger;
LiteQueryl.Params[1l].DataType := ftInteger;
LiteQueryl.Params[2].DataType := ftFloat;
LiteQueryl.Params[3].DataType := ftString;
LiteQueryl.Params[4].DataType := ftDateTime;
// specify the array dimension:
LiteQueryl.Params.vValueCount := 1000;

// populate the array with parameter values:

for i := 0 to LiteQueryl.Params.ValueCount - 1 do begin
LiteQueryl.Params[0][1].AsInteger := 1 + 1;
LiteQueryl.Params[1][1].AsInteger := 1 + 2000 + 1;
LiteQueryl.Params[2][i].AsFloat := (0 + 1) / 12;
LiteQueryl.Params[3][i].AsString := 'values ' + IntToStr(i + 1);
éiteQueryl.Params[4][i].AsDateTime := Now;

end;

// insert 1000 rows into the BATCH_TEST table

© 2024 Enter your company name

99

SQLite Data Access Components

LiteQueryl.Execute(1000);
end;

This command will insert 1000 rows to the table with one SQL query using the prepared array
of parameter values. The number of inserted rows is defined in the Iters parameter of the
Execute(lters: integer; Offset: integer = 0) method. In addition, you can pass another
parameter — Offset (0 by default) — to the method. The Offset parameter points the array
element, which the Batch operation starts from.

We can insert 1000 records into the BATCH_TEST table in 2 ways.

All 1000 rows at a time:

LiteQueryl.Execute(1000);
2x500 rows:

// insert first 500 rows
LiteQueryl.Execute(500, 0);
// insert next 500 rows
LiteQueryl.Execute(500, 500);

500 rows, then 300, and finally 200:

// insert 500 rows
LiteQueryl.Execute(500, 0);

// insert next 300 rows starting from 500
LiteQueryl.Execute(300, 500);

// insert next 200 rows starting from 800
LiteQueryl.Execute(200, 800);

Batch UPDATE operation sample
With Batch operations we can modify all 1000 rows of our BATCH_TEST table just this
simple:
var
i: Integer;

begin
// describe the SQL query

LiteQueryl.SQL.Text := 'UPDATE BATCH_TEST SET F_INTEGER=:F_INTEGER,

// define parameter types passed to the query:

LiteQueryl.Params[0] .DataType := ftInteger;
LiteQueryl.Params[1l].DataType := ftFloat;
LiteQueryl.Params[2].DataType := ftString;
LiteQueryl.Params[3].DataType := ftDateTime;
LiteQueryl.Params[4].DataType := ftInteger;

// specify the array dimension:

LiteQueryl.Params.ValueCount := 1000;

// populate the array with parameter values:

for i := 0 to 1000 - 1 do begin
LiteQueryl.Params[0][i].AsInteger := i - 2000 + 1;
LiteQueryl.Params[1][i].AsFloat := (i + 1) / 100;

© 2024 Enter your company name

F_FLOA

Using LiteDAC 100

LiteQueryl.Params[2][i1].AsString := 'New Values ' + IntToStr(i + 1);
LiteQueryl.Params[3][i].AsDateTime := Now;
éiteQueryl.Params[4][i].AsInteger =1 + 1;

end;

// update 1000 rows in the BATCH_TEST table
éiteQueryl.Execute(lOOO);
end;

Batch DELETE operation sample
Deleting 1000 rows from the BATCH_TEST table looks like the following operation:

var
i: Integer;

begin
// describe the SQL query
LiteQueryl.sSQL.Text := 'DELETE FROM BATCH_TEST WHERE ID=:ID';

// define parameter types passed to the query:

LiteQueryl.Params[0] .DataType := ftInteger;

// specify the array dimension

LiteQueryl.Params.vValueCount := 1000;

// populate the arrays with parameter values

for i := 0 to 1000 - 1 do
LiteQueryl.Params[0][1].AsInteger := 1 + 1;

// delete 1000 rows from the BATCH_TEST table

éiteQueryl.Execute(lOOO);

end;

Performance comparison

The example with BATCH_TEST table allows to analyze execution speed of normal

operations with a database and Batch operations:

25 000 records

S :
Operation Type Standard Operation g . Operation (sec.)

(sec.)
Insert 2292 0.92
Update 2535 2.63
Delete 2175 0.44

The less, the better.

It should be noted, that the retrieved results may differ when modifying the same table on
different database servers. This is due to the fact that operations execution speed may differ
depending on the settings of a particular server, its current workload, throughput, network

connection, etc.

Thing you shouldn’'t do when accessing parameters in Batch operations!

© 2024 Enter your company name

101

SQLite Data Access Components

410

When populating the array and inserting records, we accessed query parameters by index. It
would be more obvious to access parameters by name:

for i := 0 to 9999 do begin
LiteQueryl.Params.ParamByName('ID')[1].AsInteger := 1 + 1;

LiteQueryl.Params.ParamByName('F_INTEGER')[1].AsInteger := 1 + 2000 + 1;
LiteQueryl.Params.ParamByName('F_FLOAT')[1].AsFloat = (1 + 1) / 12;

'values
Now;

LiteQueryl.Params.ParamByName('F_STRING')[1].AsString :
LiteQueryl.Params.ParamByName('F_DATE') [i].AsDateTime :
end;

However, the parameter array would be populated slower, since you would have to define the
ordinal number of each parameter by its name in each loop iteration. If a loop is executed
10000 times — performance loss can become quite significant.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Increasing Performance

This topic considers basic stages of working with DataSet and ways to increase performance
on each of these stages.

Connect

If your application performs Connect/Disconnect operations frequently, additional
performance can be gained using pooling mode (TCustomDAConnection.Pooling = True). It
reduces connection reopening time greatly (hundreds times). Such situation usually occurs in
web applications.

Execute

If your application executes the same query several times, you can use the
TCustomDADataSet.Prepare method or set the TDADataSetOptions.AutoPrepare property to

increase performance. For example, it can be enabled for Detail dataset in Master/Detail
relationship or for update objects in TCustomDAUpdateSQL. The performance gain achieved

this way can be anywhere from several percent to several times, depending on the situation.

To execute SQL statements a TLiteSQL component is more preferable than TLiteQuery. It
can give several additional percents performance gain.

If the TCustomDADataSet.Options.StrictUpdate option is set to False, the RowsAffected

© 2024 Enter your company name

+

IntTo

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 102

property is not calculated and becomes equal zero. This can improve performance of query
executing, so if you need to execute many data updating statements at once and you don't
mind affected rows count, set this option to False.

Fetch

You can also tweak your application performance by using the following properties of
TCustomDADataSet descendants:

e FetchRows

e Options.LongStrings

e UniDirectional

See the descriptions of these properties for more details and recommendations.

Navigate

The Locate function works faster when dataset is locally sorted on KeyFields fields. Local
dataset sorting can be set with the IndexFieldNames property. Performance gain can be large

if the dataset contains a large number of rows.
Lookup fields work faster when lookup dataset is locally sorted on lookup Keys.

Setting the TDADataSetOptions.CacheCalcFields property can improve performance when

locally sorting and locating on calculated and lookup fields. It can be also useful when
calculated field expressions contain complicated calculations.

Setting the TDADataSetOptions.LocalMasterDetail option can improve performance greatly

by avoiding database requests on detail refreshes. Setting the
TDADataSetOptions.DetailDelay option can be useful for avoiding detail refreshes when

switching master DataSet records frequently.

Update

If your application updates datasets in the CachedUpdates mode, then setting the
TCustomDADataSet.Options.UpdateBatchSize option to more than 1 can improve

performance several hundred times more by reducing the number of requests to the
database.

You can also increase the data sending performance a bit (several percents) by using

© 2024 Enter your company name

103

SQLite Data Access Components

411

Dataset.UpdateObject.ModifyObject, Dataset.UpdateObject, etc. Little additional performance
improvement can be reached by setting the AutoPrepare property for these objects.

Insert

If you are about to insert a large number of records into a table, you should use the
TDevart.SQLiteDac.TLiteLoader component instead of Insert/Post methods, or execution of

the INSERT commands multiple times in a cycle. Sometimes usage of
TDevart.SQLiteDac.TLiteLoader improves performance several times.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Working in an Unstable Network

The following settings are recommended for working in an unstable network:

TCustomDAConnection.Options.LocalFailover = True
TCustomDAConnection.Options.DisconnectedMode = True
TDataSet.CachedUpdates = True
TCustomDADataSet.FetchAll = True
TCustomDADataSet.Options.LocalMasterDetail = True

These settings minimize the number of requests to the database. Using
TCustomDAConnection.Options.DisconnectedMode allows DataSet to work without an active

connection. It minimizes server resource usage and reduces connection break probability. I.
e. in this mode connection automatically closes if it is not required any more. But every
explicit operation must be finished explicitly. That means each explicit connect must be
followed by explicit disconnect. Read Working with Disconnected Mode topic for more

information.

Setting the FetchAll property to True allows to fetch all data after cursor opening and to close
connection. If you are using master/detail relationship, we recommend to set the
LocalMasterDetail option to True.

It is not recommended to prepare queries explicitly. Use the CachedUpdates mode for

DataSet data editing. Use the TCustomDADataSet.Options.UpdateBatchSize property to

reduce the number of requests to the database.

If a connection breaks, a fatal error occurs, and the OnConnectionLost event will be raised if

the following conditions are fulfilled:

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 104

e There are no opened and not fetched datasets;

e There are no explicitly prepared datasets or SQLs.

If the user does not refuse suggested RetryMode parameter value (or does not use the
OnConnectionLost event handler), LiteDAC can implicitly perform the following operations:

connect;
DataSet.ApplyUpdates;
DataSet.Open;

l.e. when the connection breaks, implicit reconnect is performed and the corresponding
operation is reexecuted. We recommend to wrap other operations in transactions and fulfill
their reexecuting yourself.

The using of Pooling in Disconnected Mode allows to speed up most of the operations
because of connecting duration reducing.

See Also

e FailOver demo

e Working with Disconnected Mode

e TCustomDAConnection.Options

e TCustomDAConnection.Pooling

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

412 Macros

Macros help you to change SQL statements dynamically. They allow partial replacement of
the query statement by user-defined text. Macros are identified by their names which are then
referred from SQL statement to replace their occurrences for associated values.

First step is to assign macros with their names and values to a dataset object.

Then modify SQL statement to include macro names into desired insertion points. Prefix
each name with & ("at") sign to let LiteDAC discriminate them at parse time. Resolved SQL
statement will hold macro values instead of their names but at the right places of their
occurrences. For example, having the following statement with the TableName macro name:

SELECT * FROM &TableName

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

105

SQLite Data Access Components

413

You may later assign any actual table name to the macro value property leaving your SQL
statement intact.

Queryl.SQL.Text := 'SELECT * FROM &TableName';
Queryl.MacroByName('TableName').value := 'Dept';
Queryl.Open;

LiteDAC replaces all macro names with their values and sends SQL statement to the
database when SQL execution is requested.

Note that there is a difference between using TMacro AsString and Value properties. If you set

macro with the AsString property, it will be quoted. For example, the following statements will
result in the same result Query1.SQL property value.

Queryl.MacroByName('StringMacro').value := A string ;
Queryl.MacroByName('StringMacro').AsString := 'A string';

Macros can be especially useful in scripts that perform similar operations on different objects.
You can use macros that will be replaced with an object name. It allows you to have the same
script text and to change only macro values.

You may also consider using macros to construct adaptable conditions in WHERE clauses of
your statements.

See Also
e TMacro

e TCustomDADataSet.MacroByName

e TCustomDADataSet.Macros

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

DataSet Manager

DataSet Manager window

The DataSet Manager window displays the datasets in your project. You can use the DataSet
Manager window to create a user interface (consisting of data-bound controls) by dragging
items from the window onto forms in your project. Each item has a drop-down control list
where you can select the type of control to create prior to dragging it onto a form. You can
customize the control list with additional controls, including the controls you have created.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 106

|
E| - | S
E|§j:| Project]_bdsproj
o 3 Form1.Queny3
El@,ﬁ Farml.Quernd
=L Fields
-3 0-L0C {Querpdl OC}
3 1 - DMAME {QueydDMAME }

E 2 - DEFTHO {QuerydDEPTHO}

TDEEdit

TDBText

E'E' TDEComboBox

?f TOECheckBox
18 TDBRadioGraup
= None

Customize

[Dragn'Drop contral: TDBEdit =

Using the DataSet Manager window, you can:
¢ Create forms that display data by dragging items from the DataSet Manager window onto

forms.
e Customize the list of controls available for each data type in the DataSet Manager window.

¢ Choose which control should be created when dragging an item onto a form in your

Windows application.

¢ Create and delete TField objects in the DataSets of your project.

Opening the DataSet Manager window

You can display the DataSet Manager window by clicking DataSet Manager on the Tools
menu. You can also use IDE desktop saving/loading to save DataSet Manager window
position and restore it during the next IDE loads.

© 2024 Enter your company name

107

SQLite Data Access Components

Observing project DataSets in the DataSet Manager
Window

By default DataSet Manager shows DataSets of currently open forms. It can also extract
DataSets from all forms in the project. To use this, click Extract DataSets from all forms in
project button. This settings is remembered. Note, that using this mode can slow down
opening of the large projects with plenty of forms and DataSets. Opening of such projects can
be very slow in Delphi 6 and Borland Developer Studio 2006 and can take up to several tens
of minutes.

DataSets can be grouped by form or connection. To change DataSet grouping click the
Grouping mode button or click a down. You can also change grouping mode by selecting
required mode from the DataSet Manager window popup menu.

1
BEEHE
Eléﬂ Project].bdsproj
=-Cy Forml
* 2 EEm |
- ﬂmﬁ Quen3
-8 Querpd
=-Cy Form2
..... ﬂmE Query

[Drag'n'Drop contral: TDBGrid v

Creating Data-bound Controls

You can drag an item from the DataSet Manager window onto a form to create a new data-
bound control. Each node in the DataSet Manager window allows you to choose the type of
control that will be created when you drag it onto a form. You must choose between a Grid
layout, where all columns or properties are displayed in a TDataGrid component, or a Details
layout, where all columns or properties are displayed in individual controls.

To use grid layout drag the dataset node on the form. By default TDataSource and TDBGrid
components are created. You can choose the control to be created prior to dragging by
selecting an item in the DataSet Manager window and choosing the control from the item's

© 2024 Enter your company name

Using LiteDAC 108

drop-down control list.

Bl=lE =

E;j Project1.bdsproj

=138 Farml.Quen?
-3 Fields
-3 0- COMM {Query2COMM}
-3 1-DEPTHO {Query2DEPTNO}
(3 2- EMPNO {Quen2EWPNO}
a_*i-l EMAME
~[5] HIREDATE

-5 J0B
a_*i-l MGH

I *i-l SAL
Q_E Form.Quen2
E]---QE Farm.Quered

| Jcomm [oerTh |EMJ;‘NO | ﬂn Ll

: ! —+ 0 Fa6d | Cancel :
: | 300 a0 7499 . —l
1 500 30 7521 T Help |;
|| 20 7566 T

1400 30 654 L

e

T @ —L

|Drag'n'Dr0|3 control: TDBGrid

A

To use Details layout choose Details from the DataSet node drop-down control list in the

DataSet Manager window. Then select required controls in the drop-down control list for each
DataSet field. DataSet fields must be created. After setting required options you can drag the
DataSet to the form from the DataSet wizard. DataSet Manager will create TDataSource

component, and a component and a label for each field.

© 2024 Enter your company name

109

SQLite Data Access Components

Bl=EE R =

Elgj Project1_bdszproj
=-F5] Forml.Quemy?
=-3 Fields
----- i3 0 - COMM {Quey2C0kik}
""" 3 1 -DEPTHO {Quen2DEPTHO}
----- & 2 -EMPNO {QuernZEMPNO}
45 EMAME
I8 HIREDATE

43 JOE
43 MG

45 SaL
..... B8 Form1.Queny3
EEI"'Q..E Forml. Quend

|Drag'n'Dru:u|:- conkral; <Details=

A

(ol
e D
ffl._Dﬁ.._....:fffffffffffffffffffffffff
(DEFTRIG. - - - - - o
| 200 i

ghito 1111

—

Adding custom controls to the DataSet Manager window

To add custom control to the list click the Options button on the DataSet Manager toolbar. A
DataSet Manager - Customize controls dialog will appear. Using this dialog you can set
controls for the DataSets and for the DataSet fields of different types. To do it, click DataSets
node or the node of field of required type in DB objects groups box and use Add and Remove
buttons to set required control list. You can also set default control by selecting it in the list of
assigned DB controls and pressing Default button.

© 2024 Enter your company name

Using LiteDAC 110

_laix
Cuztomize controlz | I:Iptignsl
B‘ WCL [Lizst of azsigned DB Controls
ad "E'!E’tﬂ Contrals
= Fie unﬁzim - TOBGrid <Diefaults
.y | TCRDBGd
tning = .
& malint :ﬂ LDEEtrIGnd
Integer ‘9 one
word D etailz
Boolean
Float
Currency b £ ddd <7 Remove ¥ 2 Set Default
BCD
[Date Lizt af DB Contrals installed in IDE
Time Cantrols Packages
DateTime - TDBGrid deldb60
39“;3 5 TDBN avigator deldbBD
;; lﬁ‘teg =3 TOBCHIGH deddbED
Hmine TCRDBGrd creontrols60
Blob
temo
Graphic
Frattdemo
ParadoxOle LI
Ok Cancel Fezet Help

The default configuration can easily be restored by pressing Reset button in the DataSet
Manager - Options dialog.

Working with TField objects

DataSet Manager allows you to create and remove TField objects. DataSet must be active to
work with its fields in the DataSet Manager. You can add fields, based on the database table
columns, create new fields, remove fields, use drag-n-drop to change fields order.

To create a field based on the database table column right-click the Fields node and select
Create Field from the popup menu or press <Insert>. Note that after you add at least one field
manually, DataSet fields corresponding to data fields will not be generated automatically when
you drag the DataSet on the form, and you can not drag such fields on the form. To add all
available fields right-click the Fields node and select Add all fields from the popup menu.

To create new field right-click the Fields node and select New Field from the popup menu or
press <Ctrl+Insert>. The New Field dialog box will appear. Enter required values and press

© 2024 Enter your company name

111

SQLite Data Access Components

414

OK button.
To delete fields select these fields in the DataSet Manager window and press <Delete>.

DataSet Manager allows you to change view of the fields displayed in the main window. Open
the Customize controls dialog, and jump to the Options page.

=

Customize contiolz D ptions |

| = Dizplay Options
Fields

[Field type
v Object name

S ample:

DEFTHO[Integer{Querny1 DEPTHO}

[rata Fieldz

[Field type

S ample:

DEPTHO[Integer]

Ol Cancel Rezat Help

You can chose what information will be added to names of the Field and Data Field objects in
the main window of DataSet Manager. Below you can see the example.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

DBMonitor

To extend monitoring capabilities of LiteDAC applications there is an additional tool called
DBMonitor. It is provided as an alternative to Borland SQL Monitor which is also supported by
LiteDAC.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Using LiteDAC 112

DBMonitor is an easy-to-use tool to provide visual monitoring of your database applications.

DBMonitor has the following features:

e multiple client processes tracing;
e SQL event filtering (by sender objects);

e SQL parameter and error tracing.

DBMonitor is intended to hamper an application being monitored as little as possible.

To trace your application with DB Monitor you should follow these steps:

e drop TLiteSQLMonitor component onto the form;

e turn moDBMonitor option on;
e set to True the Debug property for components you want to trace;

e start DBMonitor before running your program.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

415 Writing GUI Applications with LiteDAC

LiteDAC GUI part is standalone. This means that to make GUI elements such as SQL
cursors, connect form, connect dialog etc. available, you should explicitly include LiteDacVcl
unit in your application. This feature is needed for writing console applications.

Delphi and C++Builder

By default LiteDAC does not require Forms, Controls and other GUI related units. Only
TLiteConnectDialog component require the Forms unit.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

416 Connection Pooling

Connection pooling enables an application to use a connection from a pool of connections
that do not need to be reestablished for each use. Once a connection has been created and
placed in a pool, an application can reuse that connection without performing the complete

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

113

SQLite Data Access Components

connection process.

Using a pooled connection can result in significant performance gains, because applications
can save the overhead involved in making a connection. This can be particularly significant for
middle-tier applications that connect over a network or for applications that connect and
disconnect repeatedly, such as Internet applications.

To use connection pooling set the Pooling property of the TCustomDAConnection component

to True. Also you should set the PoolingOptions of the TCustomDAConnection. These

options include MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime. Connections

belong to the same pool if they have identical values for the following parameters:
MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime,

P:Devart.Dac.TCustomDAConnection.Database,
P:Devart.Dac.TCustomDAConnection.EncryptionKey, When a connection component
disconnects from the database the connection actually remains active and is placed into the
pool. When this or another connection component connects to the database it takes a
connection from the pool. Only when there are no connections in the pool, new connection is
established.

Connections in the pool are validated to make sure that a broken connection will not be
returned for the TCustomDAConnection component when it connects to the database. The

pool validates connection when it is placed to the pool (e. g. when the TCustomDAConnection

component disconnects). If connection is broken it is not placed to the pool. Instead the pool
frees this connection. Connections that are held in the pool are validated every 30 seconds.
All broken connections are freed. If you set the PoolingOptions.Validate to True, a connection

also will be validated when the TCustomDAConnection component connects and takes a

connection from the pool. When some network problem occurs all connections to the
database can be broken. Therefore the pool validates all connections before any of them will
be used by a TCustomDAConnection component if a fatal error is detected on one

connection.

The pool frees connections that are held in the pool during a long time. If no new connections
are placed to the pool it becomes empty after approximately 4 minutes. This pool behaviour is
intended to save resources when the count of connections in the pool exceeds the count that
is needed by application. If you set the PoolingOptions.MinPoolSize property to a non-zero

value, this prevents the pool from freeing all pooled connections. When connection count in
the pool decreases to MinPoolSize value, remaining connection will not be freed except if they

© 2024 Enter your company name

Using LiteDAC 114

are broken.

The PoolingOptions.MaxPoolSize property limits the count of connections that can be active

at the same time. If maximum count of connections is active and some
TCustomDAConnection component tries to connect, it will have to wait until any of
TCustomDAConnection components disconnect. Maximum wait time is 30 seconds. If active
connections' count does not decrease during 30 seconds, the TCustomDAConnection

component will not connect and an exception will be raised.

You can limit the time of connection's existence by setting the
PoolingOptions.ConnectionLifeTime property. When the TCustomDAConnection component

disconnects, its internal connection will be freed instead of placing to the pool if this
connection is active during the time longer than the value of the
PoolingOptions.ConnectionLifeTime property. This property is designed to make load

balancing work with the connection pool.

To force freeing of a connection when the TCustomDAConnection component disconnects,

the RemoveFromPool method of TCustomDAConnection can be used. You can also free all

connection in the pool by using the class procedures Clear or AsyncClear of
TLiteConnectionPoolManager. These procedures can be useful when you know that all
connections will be broken for some reason.

It is recommended to use connection pooling with the DisconnectMode option of the

TCustomDAConnection component set to True. In this case internal connections can be

shared between TCustomDAConnection components. When some operation is performed

on the TCustomDAConnection component (for example, an execution of SQL statement) this
component will connect using pooled connection and after performing operation it will
disconnect. When an operation is performed on another TCustomDAConnection component

it can use the same connection from the pool.

See Also

e TCustomDAConnection.Pooling

e TCustomDAConnection.PoolingOptions

e Working with Disconnected Mode

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

115

SQLite Data Access Components

417

64-bit Development with Embarcadero RAD Studio XE2

RAD Studio XE2 Overview

RAD Studio XE2 is the major breakthrough in the line of all Delphi versions of this product. It
allows deploying your applications both on Windows and Mac OS platforms. Additionally, it is
now possible to create 64-bit Windows applications to fully benefit from the power of new
hardware. Moreover, you can create visually spectacular applications with the help of the
FireMonkey GPU application platform.

Its main features are the following:

e Windows 64-bit platform support;

e Mac OS support;

¢ FireMonkey application development platform;
e Live data bindings with visual components;

¢ \/CL styles for Windows applications.

Changes in 64-bit Application Development

64-bit platform support implies several important changes that each developer must keep in
mind prior to the development of a new application or the modernization of an old one.

General

RAD Studio XE2 IDE is a 32-bit application. It means that it cannot load 64-bit packages at
design-time. So, all design-time packages in RAD Studio XE2 IDE are 32-bit.

Therefore, if you develop your own components, you should remember that for the purpose of
developing components with the 64-bit platform support, you have to compile run-time
packages both for the 32- and 64-bit platforms, while design-time packages need to be
compiled only for the 32-bit platform. This might be a source of difficulties if your package is
simultaneously both a run-time and a design-time package, as it is more than likely that this
package won't be compiled for the 64-bit platform. In this case, you will have to separate your
package into two packages, one of which will be used as run-time only, and the other as
design-time only.

For the same reason, if your design-time packages require that certain DLLs be loaded, you

© 2024 Enter your company name

Using LiteDAC 116

should remember that design-time packages can be only 32-bit and that is why they can load
only 32-bit versions of these DLLs, while at run-time 64-bit versions of the DLLs will be
loaded. Correspondingly, if there are only 64-bit versions of the DLL on your computer, you
won't be able to use all functions at design-time and, vice versa, if you have only 32-bit
versions of the DLLs, your application won't be able to work at run-time.

Extended type

For this type in a 64-bit applications compiler generates SSE2 instructions instead of FPU,
and that greatly improves performance in applications that use this type a lot (where data
accuracy is needed). For this purpose, the size and precision of Extended type is reduced:

TYPE 32-bit 64-bit
Extended 10 bytes 8 bytes

The following two additional types are introduced to ensure compatibility in the process of
developing 32- and 64-bit applications:

Extended80 — whose size in 32-bit application is 10 bytes; however, this type provides the
same precision as its 8-byte equivalent in 64-bit applications.

Extended80Rec — can be used to perform low-level operations on an extended precision
floating-point value. For example, the sign, the exponent, and the mantissa can be changed
separately. It enables you to perform memory-related operations with 10-bit floating-point
variables, but not extended-precision arithmetic operations.

Pointer and Integers

The major difference between 32- and 64-bit platforms is the volume of the used memory
and, correspondingly, the size of the pointer that is used to address large memory volumes.

TYPE 32-bit 64-bit
Pointer 4 bytes 8 bytes

At the same time, the size of the Integer type remains the same for both platforms:

TYPE 32-bit 64-bit
Integer 4 bytes 4 bytes

That is why, the following code will work incorrectly on the 64-bit platform:

© 2024 Enter your company name

117 SQLite Data Access Components

Ptr := Pointer(Integer(Ptr) + Offset);

While this code will correctly on the 64-bit platform and incorrectly on the 32-bit platform:

Ptr := Pointer(Int64(Ptr) + Offset);

For this purpose, the following platform-dependent integer type is introduced:

TYPE 32-bit 64-bit
Nativelnt 4 bytes 8 bytes
NativeUInt |4 bytes 8 bytes

This type helps ensure that pointers work correctly both for the 32- and 64-bit platforms:

Ptr := Pointer(NativeInt(Ptr) + Offset);

However, you need to be extra-careful when developing applications for several versions of
Delphi, in which case you should remember that in the previous versions of Delphi the
Nativelnt type had different sizes:

Delphi

TYPE . Size
Version

Nativelnt D5 N/A
Nativelnt D6 N/A
Nativelnt D7 8 bytes
Nativelnt D2005 8 bytes
Nativelnt D2006 8 bytes
Nativelnt D2007 8 bytes
Nativelnt D2009 4 bytes
Nativelnt D2010 4 bytes

Nativelnt Delphi XE |4 bytes
Nativelnt Delphi XE2 4 or 8 bytes

Out parameters

Some WinAPIs have OUT parameters of the SIZE_T type, which is equivalent to Nativelnt in
Delphi XE2. The problem is that if you are developing only a 32-bit application, you won't be
able to pass Integer to OUT, while in a 64-bit application, you will not be able to pass Int64; in
both cases you will have to pass Nativelnt.

For example:

procedure MyProc(out value: NativeInt);
begin

© 2024 Enter your company name

Using LiteDAC 118

Value := 12345;
end;
var
Valuel: NativeInt;
{$IFDEF WIN32}
value2: Integer;
{$ENDIF}
{$IFDEF WING4}
value2: Intb64;
{$ENDIF}
begin
MyProc(valuel); // will be compiled;
MéProc(Va1ue2); // will not be compiled !!!
end;

Win API

If you pass pointers to SendMessage/PostMessage/TControl.Perform, the wParam and
IParam parameters should be type-casted to the WPARAM/LPARAM type and not to Integer/
Longint.

Correct:

SendMessage(Chwnd, WM_SETTEXT, 0, LPARAM(@vyCharArray));
Wrong:

SendMessage(hwnd, WM_SETTEXT, 0, Integer(@vyCharArray));

Replace SetWindowLong/GetWindowLog with SetWindowLongPtr/GetWindowLongPtr for
GWLP_HINSTANCE, GWLP_ID, GWLP_USERDATA, GWLP_HWNDPARENT and
GWLP_WNDPROC as they return pointers and handles. Pointers that are passed to
SetWindowLongPtr should be type-casted to LONG_PTR and not to Integer/Longint.

Correct:

SetwindowLongPtr(hwnd, GWLP_WNDPROC, LONG_PTR(@vywindowProc));
Wrong:

SetwindowLong(hwnd, GWL_WNDPROC, Longint(@MywindowProc));

Pointers that are assigned to the TMessage.Result field should use a type-cast to LRESULT
instead of Integer/Longint.

Correct:
Message.Result := LRESULT(Self);
Wrong:
Message.Result := Integer(Self);

© 2024 Enter your company name

119

SQLite Data Access Components

All TWM...-records for the windows message handlers must use the correct Windows types
for the fields:

Msg: UINT; wParam: WPARAM; 1Param: LPARAM; Result: LRESULT)

Assembler

In order to make your application (that uses assembly code) work, you will have to make
several changes to it:

e rewrite your code that mixes Pascal code and assembly code. Mixing them is not supported
in 64-bit applications;

e rewrite assembly code that doesn't consider architecture and processor specifics.

You can use conditional defines to make your application work with different architectures.

You can learn more about Assembly code here: http://docwiki.embarcadero.com/RADStudio/

en/Using Inline Assembly Code You can also look at the following article that will help you to

make your application support the 64-bit platform: http://docwiki.embarcadero.com/
RAD Studio/en/Converting 32-bit Delphi Applications to 64-bit Windows

Exception handling

The biggest difference in exception handling between Delphi 32 and 64-bit is that in Delphi
XE2 64-bit you will gain more performance because of different internal exception
mechanism. For 32-bit applications, the Delphi compiler (dcc32.exe) generates additional
code that is executed any way and that causes performance loss. The 64-bit compiler
(dccb4.exe) doesn't generate such code, it generates metadata and stores it in the PDATA
section of an executable file instead.

But in Delphi XE2 64-bit it's impossible to have more than 16 levels of nested exceptions.
Having more than 16 levels of nested exceptions will cause a Run Time error.

Debugging

Debugging of 64-bit applications in RAD Studio XE2 is remote. It is caused by the same
reason: RAD Studio XE2 IDE is a 32 application, but your application is 64-bit. If you are trying
to debug your application and you cannot do it, you should check that the Include remote

debug symbols project option is enabled.

To enable it, perform the following steps:

© 2024 Enter your company name

http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows

Using LiteDAC 120

1. Open Project Options (in the main menu Project->Options).

2. In the Target combobox, select Debug configuration - 64-bit Windows platform. If there
is no such option in the combobox, right click "Target Platforms" in Project Manager and
select Add platform. After adding the 64-bit Windows platform, the Debug configuration -

64-bit Windows platform option will be available in the Target combobox.
3. Select Linking in the left part of the Project Options form.

4. enable the Include remote debug symbols option.

After that, you can run and debug your 64-bit application.

To enable remote debugging, perform the following steps:

1. Install Platform Assistant Server (PAServer) on a remote computer. You can find PAServer
in the %RAD_Studio_XEZ2_Install_Directory%\PAServer directory. The setup_paserver.exe
file is an installation file for Windows, and the setup_paserver.zip file is an istallation file for
MacOS.

2. Run the PAServer.exe file on a remote computer and set the password that will be used to
connect to this computer.

3. On alocal computer with RAD Studio XE2 installed, right-click the target platform that you
want to debug in Project Manager and select Assign Remote Profile. Click the Add button
in the displayed window, input your profile name, click the Next button, input the name of a
remote computer and the password to it (that you assigned when you started PAServer on

a remote computer).

After that, you can test the connection by clicking the Test Connection button. If your
connection failed, check that your firewalls on both remote and local computers do not block
your connection, and try to establish a connection once more. If your connection succeeded,
click the Next button and then the Finish button. Select your newly created profile and click
OK.

After performing these steps you will be able to debug your application on a remote computer.
You application will be executed on a remote computer, but you will be able to debug it on
your local computer with RAD Studio XE2.

For more information about working with Platform Assistant Server, please refer to http://

© 2024 Enter your company name

http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Running_the_Platform_Assistant_on_Windows

121

SQLite Data Access Components

418

docwiki.embarcadero.com/RADStudio/Tokyo/en/

Running_the Platform Assistant on Windows

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Database Specific Aspects of 64-bit Development

SQLite Connectivity Aspects

Using client library:

If you are developing a 64-bit application, you have to be aware of specifics of working with
client libraries at design-time and run-time. To connect to a SQLite database at design-time,
you must have a 32-bit SQLite client library. You have to place it to the C:\Windows
\SysWOW64 directory. This requirement flows out from the fact that RAD Studio XE2 is a 32-
bit application and it cannot load 64-bit libraries at design-time. To work with a SQLite
database in run-time (64-bit application), you must have the 64-bit client library placed to the
C:\Windows\System 32 directory.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Reference

This page shortly describes units that exist in LiteDAC.

Units
Unit Name Description
This unit contains base
CRAccess classes for accessing
databases.
This unit contains
CRBatchMove implementation of the
TCRBatchMove component.
CREncryption This unit contains base
classes for data encryption.
CRGrid This unit contains the

TCRDBGrid component.

© 2024 Enter your company name

http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Running_the_Platform_Assistant_on_Windows
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Running_the_Platform_Assistant_on_Windows
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 122

CRVio

DAAlerter

DADump

DALoader

DAScript

DASQLMonitor

DBAccess

LiteAccess

LiteDacVcl

LiteDump

LiteError

LiteLoader

LiteScript

LiteSQLMonitor

MemData

MemDS

This unit contains the base
class for the TLiteAlerter
component.

This unit contains the base
class for the TLiteDump
component.

This unit contains the base
class for the TLiteLoader
component.

This unit contains the base
class for the TLiteScript
component.

This unit contains the base
class for the
TLiteSQLMonitor
component.

This unit contains base
classes for most of the
components.

This unit contains main
components of LiteDAC
This unit contains the visual
constituent of LiteDAC.
This unit contains
implementation of the
TLiteDump component
LiteError unit implements the
T.Devart.LiteDac.ESQLiteEr
ror class.

This unit contains
implementation of the
TLiteLoader component
This unit contains
implementation of the
TLiteScript component.
This unit contains
implementation of the
TLiteSQLMonitor

component.

This unit contains classes for
storing data in memory.

This unit contains
implementation of the

© 2024 Enter your company name

123

SQLite Data Access Components

5.1

VirtualDataSet

VirtualTable

© 1997-2024
Devart. All Rights Request Support DAC Forum

Reserved.

CRAccess
This unit contains base classes for accessing databases.

Classes
Name
TCRCursor
Types

Name

TBeforeFetchProc

Enumerations

Name

TCRIsolationLevel

TCRTransactionAction

TCursorState

TMemDataSet class.

This unit contains
implementation of the
TVirtualDataSet component.
This unit contains
implementation of the
TVirtualTable component.

Provide Feedback

Description

A base class for classes that
work with database cursors.

Description

This type is used for the
TCustomDADataSet.Before
Fetch event.

Description

Specifies how to handle
transactions containing
database modifications.
Specifies the transaction
behaviour whenitis
destroyed while being
active, or when one of its
connections is closed with
the active transaction.

Used to set cursor state

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 124

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.1.1 Classes

Classes in the CRAccess unit.

Classes

Name Description

TCRCursor A base class for classes that
work with database cursors.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.1.1.1 TCRCursor Class

A base class for classes that work with database cursors.

For a list of all members of this type, see TCRCursor members.

Unit

CRAccess

Syntax

TCRCursor = class(TSharedobject);

Remarks

TCRCursor is a base class for classes that work with database cursors.

Inheritance Hierarchy
TSharedObject
TCRCursor

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

125

SQLite Data Access Components

5.1.1.1.1 Members

5.1.2

5.1.21

TCRCursor class overview.

Properties

Name

RefCount (inherited from TSharedObject)

Methods

Name

AddRef (inherited from TSharedObject)

Release (inherited from TSharedObject)

© 1997-2024
Devart. All Rights Request Support DAC Forum

Reserved.

Types
Types in the CRAccess unit.
Types

Name

TBeforeFetchProc

© 1997-2024
Devart. All Rights Request Support DAC Forum

Reserved.

TBeforeFetchProc Procedure Reference

Description

Used to return the count of
reference to a
TSharedObject object.

Description

Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Decrements the reference
count.

Provide Feedback

Description

This type is used for the
TCustomDADataSet.Before
Fetch event.

Provide Feedback

This type is used for the TCustomDADataSet.BeforeFetch event.

Unit

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 126

CRAcCcess

Syntax

TBeforeFetchProc = procedure (var Cancel: boolean) of object;

Parameters

Cancel
True, if the current fetch operation should be aborted.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.1.3 Enumerations

Enumerations in the CRAccess unit.

Enumerations

Name Description

Specifies how to handle
transactions containing
database modifications.

Specifies the transaction

behaviour when it is
TCRTransactionAction destroyed while being
active, or when one of its
connections is closed with
the active transaction.

TCRIsolationLevel

TCursorState Used to set cursor state
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.1.3.1 TCRIsolationLevel Enumeration

Specifies how to handle transactions containing database modifications.

Unit

CRAccess

Syntax

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

127

SQLite Data Access Components

5.1.3.2

TCRIsolationLevel = (il1ReadCommitted, ilReadunCommitted,

il1RepeatableRead

Values

Value

ilCustom

illsolated

ilIReadCommitted

ilIReadUnCommitte
d

iIRepeatableRead

ilSnapshot

© 1997-2024
Devart. All Rights
Reserved.

, 1l1Isolated, ilSnapshot, ilCustom);

Meaning

The parameters of the transaction are set manually in the Params
property.

The most restricted level of transaction isolation. Database
server isolates data involved in current transaction by putting
additional processing on range locks. Used to put aside all
undesired effects observed in the concurrent accesses to the
same set of data, but may lead to a greater latency at times of a
congested database environment.

Sets isolation level at which transaction cannot see changes
made by outside transactions until they are committed. Only dirty
reads (changes made by uncommitted transactions) are
eliminated by this state of the isolation level. The default value.

The most unrestricted level of the transaction isolation. All types
of data access interferences are possible. Mainly used for
browsing database and to receive instant data with prospective
changes.

Prevents concurrent transactions from modifying data in the
current uncommitted transaction. This level eliminates dirty reads
as well as nonrepeatable reads (repeatable reads of the same
data in one transaction before and after outside transactions may
have started and committed).

Uses row versioning. Provides transaction-level read
consistency. A data snapshot is taken when the snapshot
transaction starts, and remains consistent for the duration of a
transaction.

Request Support DAC Forum Provide Feedback

TCRTransactionAction Enumeration

Specifies the transaction behaviour when it is destroyed while being active, or when one of its

connections is closed with the active transaction.

Unit

CRAccess

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 128

Syntax

TCRTransactionAction = (taCommit, taRollback);

Values

Value Meaning

taCommit Transaction is committed.

taRollback Transaction is rolled back.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.1.3.3 TCursorState Enumeration

Used to set cursor state

Unit

CRAccess

Syntax

TCursorState = (csInactive, csOpen, csParsed, csPrepared, csBound,
csExecuteFetchAll, csExecuting, csExecuted, csFetching,
csFetchingAll, csFetched);

Values

Value Meaning

csBound Parameters bound

csExecuted Statement successfully executed
csExecuteFetchAll Set before FetchAll
csExecuting Statement is set before executing
csFetched Fetch finished or canceled
csFetching Setonfirst

csFetchingAll Set on the FetchAll start
csinactive Default state

csOpen statement open

csParsed Statement parsed

csPrepared Statement prepared

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

129

SQLite Data Access Components

5.2

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

CRBatchMove

Provide Feedback

This unit contains implementation of the TCRBatchMove component.

Classes

Name
TCRBatchMove

Types

Name

TCRBatchMoveProgressEvent

Enumerations

Name

TCRBatchMode

TCRFieldMappingMode

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

Description

Transfers records between
datasets.

Description

This type is used for the
TCRBatchMove.OnBatchMo

veProgress event.

Description

Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute
method.

Used to specify the way
fields of the destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings
list is empty.

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 130

5.21 Classes

Classes in the CRBatchMove unit.

Classes

Name Description

TCRBatchMove Transfers records between
datasets.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.2.1.1 TCRBatchMove Class

Transfers records between datasets.

For a list of all members of this type, see TCRBatchMove members.

Unit

CRBatchMove

Syntax
TCRBatchMove = class (TComponent);

Remarks

The TCRBatchMove component transfers records between datasets. Use it to copy dataset
records to another dataset or to delete datasets records that match records in another
dataset. The TCRBatchMove.Mode property determines the desired operation type, the

TCRBatchMove.Source and TCRBatchMove.Destination properties indicate corresponding
datasets.

Note: A TCRBatchMove component is added to the Data Access page of the component
palette, not to the LiteDAC page.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

131

SQLite Data Access Components

5.2.1.1.1 Members

TCRBatchMove class overview.

Properties
Name

AbortOnKeyViol

AbortOnProblem

ChangedCount

CommitCount

Destination

FieldMappingMode

KeyViolCount

Mappings

Mode

Description

Used to specify whether the
batch operation should be
terminated immediately after
key or integrity violation.
Used to specify whether the
batch operation should be
terminated immediately
when it is necessary to
truncate data to make it fit
the specified Destination.
Used to get the number of
records changed in the
destination dataset.

Used to set the number of
records to be batch moved
before commit occurs.
Used to specify the
destination dataset for the
batch operation.

Used to specify the way
fields of destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings

listis empty.

Used to get the number of
records that could not be
moved to or from the
destination dataset because
of integrity or key violations.
Used to set field matching
between source and
destination datasets for the
batch operation.

Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute

© 2024 Enter your company name

Reference 132

MovedCount

ProblemCount

RecordCount

Source

Methods

Name

Execute

Events

Name

OnBatchMoveProgress

© 1997-2024
Devart. All Rights Request Support DAC Forum

Reserved.

5.2.1.1.2 Properties

Properties of the TCRBatchMove class.

method.

Used to get the number of
records that were read from
the source dataset during
the batch operation.

Used to get the number of
records that could not be
added to the destination
dataset because of the field
type mismatch.

Used to indicate the
maximum number of records
in the source dataset that will
be applied to the destination
dataset.

Used to specify the source
dataset for the batch
operation.

Description

Performs the batch
operation.

Description

Occurs when providing
feedback to the user about
the batch operationin
progress is needed.

Provide Feedback

For a complete list of the TCRBatchMove class members, see the TCRBatchMove

Members topic.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

133

SQLite Data Access Components

Public

Name

ChangedCount

KeyViolCount

MovedCount

ProblemCount

Published

Name

AbortOnKeyViol

AbortOnProblem

CommitCount

Destination

FieldMappingMode

Description

Used to get the number of
records changed in the
destination dataset.

Used to get the number of
records that could not be
moved to or from the
destination dataset because
of integrity or key violations.

Used to get the number of
records that were read from
the source dataset during
the batch operation.

Used to get the number of
records that could not be
added to the destination
dataset because of the field
type mismatch.

Description

Used to specify whether the
batch operation should be
terminated immediately after
key or integrity violation.
Used to specify whether the
batch operation should be
terminated immediately
when itis necessary to
truncate data to make it fit
the specified Destination.
Used to set the number of
records to be batch moved
before commit occurs.
Used to specify the
destination dataset for the
batch operation.

Used to specify the way
fields of destination and
source datasets will be
mapped to each other if the

© 2024 Enter your company name

Reference 134

TCRBatchMove.Mappings
listis empty.
Used to set field matching
Mappings between source and
= destination datasets for the
batch operation.
Used to set the type of the
batch operation that will be
Mode executed after calling the
TCRBatchMove.Execute
method.
Used to indicate the
maximum number of records

RecordCount in the source dataset that will
be applied to the destination
dataset.

Used to specify the source

Source dataset for the batch
operation.

See Also

e TCRBatchMove Class

e TCRBatchMove Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.1 AbortOnKeyViol Property

Used to specify whether the batch operation should be terminated immediately after key or
integrity violation.

Class
TCRBatchMove

Syntax
property AbortonKeyviol: boolean default True;

Remarks

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

135

SQLite Data Access Components

521122

5.2.1.1.23

Use the AbortOnKeyViol property to specify whether the batch operation is terminated
immediately after key or integrity violation.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

AbortOnProblem Property

Used to specify whether the batch operation should be terminated immediately when it is
necessary to truncate data to make it fit the specified Destination.

Class
TCRBatchMove

Syntax
property AbortonProblem: boolean default True;

Remarks

Use the AbortOnProblem property to specify whether the batch operation is terminated
immediately when it is necessary to truncate data to make it fit the specified Destination.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

ChangedCount Property

Used to get the number of records changed in the destination dataset.

Class

TCRBatchMove

Syntax
property ChangedCount: Integer;

Remarks

Use the ChangedCount property to get the number of records changed in the destination
dataset. It shows the number of records that were updated in the bmUpdate or

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 136

bmAppendUpdate mode or were deleted in the bmDelete mode.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.4 CommitCount Property

Used to set the number of records to be batch moved before commit occurs.

Class
TCRBatchMove

Syntax
property CommitCount: integer default O;

Remarks

Use the CommitCount property to set the number of records to be batch moved before the
commit occurs. [f it is set to 0, the operation will be chunked to the number of records to fit 32
Kb.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.5 Destination Property

Used to specify the destination dataset for the batch operation.

Class

TCRBatchMove

Syntax
property Destination: TDataSet;

Remarks
Specifies the destination dataset for the batch operation.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

137

SQLite Data Access Components

521126

521127

FieldMappingMode Property

Used to specify the way fields of destination and source datasets will be mapped to each
other if the Mappings list is empty.

Class
TCRBatchMove

Syntax

property FieldmappingMode: TCRFieldMappingMode default
mmFieldIndex;

Remarks

Specifies in what way fields of destination and source datasets will be mapped to each other
if the Mappings list is empty.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

KeyViolCount Property

Used to get the number of records that could not be moved to or from the destination dataset
because of integrity or key violations.

Class
TCRBatchMove

Syntax
property KeyviolCount: Integer;

Remarks

Use the KeyViolCount property to get the number of records that could not be replaced,
added, deleted from the destination dataset because of integrity or key violations.

If AbortOnKeyViol is True, then KeyViolCount will never exceed one, because the operation

aborts when the integrity or key violation occurs.

See Also

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 138

e AbortOnKeyViol

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.8 Mappings Property

Used to set field matching between source and destination datasets for the batch operation.

Class
TCRBatchMove

Syntax

property Mappings: TStrings;

Remarks

Use the Mappings property to set field matching between the source and destination datasets
for the batch operation. By default fields matching is based on their position in the datasets.
To map the column ColName in the source dataset to the column with the same name in the
destination dataset, use:

ColName

Example

To map a column named SourceColName in the source dataset to the column named
DestColName in the destination dataset, use:

DestColName=SourceColName

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.9 Mode Property

Used to set the type of the batch operation that will be executed after calling the Execute
method.

Class
TCRBatchMove

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

139 SQLite Data Access Components

Syntax

property Mode: TCRBatchMode default bmAppend;

Remarks

Use the Mode property to set the type of the batch operation that will be executed after calling
the Execute method.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.10 MovedCount Property

Used to get the number of records that were read from the source dataset during the batch
operation.

Class

TCRBatchMove

Syntax
property MovedCount: Integer;

Remarks

Use the MovedCount property to get the number of records that were read from the source
dataset during the batch operation. This number includes records that caused key or integrity
violations or were trimmed.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.11 ProblemCount Property

Used to get the number of records that could not be added to the destination dataset because
of the field type mismatch.

Class

TCRBatchMove

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 140

Syntax
property ProblemCount: Integer;

Remarks

Use the ProblemCount property to get the number of records that could not be added to the
destination dataset because of the field type mismatch.

If AbortOnProblem is True, then ProblemCount will never exceed one, because the operation

aborts when the problem occurs.

See Also
e AbortOnProblem

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.2.1.1.2.12 RecordCount Property

Used to indicate the maximum number of records in the source dataset that will be applied to
the destination dataset.

Class
TCRBatchMove

Syntax
property RecordCount: Integer default O;

Remarks

Determines the maximum number of records in the source dataset, that will be applied to the
destination dataset. If it is set to 0, all records in the source dataset will be applied to the
destination dataset, starting from the first record. If RecordCount is greater than 0, up to the
RecordCount records are applied to the destination dataset, starting from the current record
in the source dataset. If RecordCount exceeds the number of records left in the source
dataset, batch operation terminates after reaching last record.

© 1997-2024

Devart. All Rights Request Support ~ DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

141 SQLite Data Access Components

Reserved.

5.2.1.1.2.13 Source Property

Used to specify the source dataset for the batch operation.

Class

TCRBatchMove

Syntax

property Source: TDataSet,;

Remarks

Specifies the source dataset for the batch operation.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.3 Methods

Methods of the TCRBatchMove class.

For a complete list of the TCRBatchMove class members, see the TCRBatchMove

Members topic.

Public

Name Description

Execute Performs the batch
operation.

See Also
e TCRBatchMove Class

e TCRBatchMove Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 142

5.2.1.1.3.1 Execute Method

Performs the batch operation.

Class
TCRBatchMove

Syntax

procedure Execute;

Remarks

Call the Execute method to perform the batch operation.

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

5.2.1.1.4 Events

Events of the TCRBatchMove class.

Provide Feedback

For a complete list of the TCRBatchMove class members, see the TCRBatchMove

Members topic.

Published

Name

OnBatchMoveProgress

See Also
e TCRBatchMove Class

e TCRBatchMove Class Members

© 1997-2024
Devart. All Rights Request Support

DAC Forum

Reserved.

Description

Occurs when providing
feedback to the user about
the batch operationin
progress is needed.

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

143

SQLite Data Access Components

5.2.1.1.4.1 OnBatchMoveProgress Event

5.2.2

5.2.2.1

Occurs when providing feedback to the user about the batch operation in progress is needed.

Class
TCRBatchMove

Syntax

property OnBatchMoveProgress: TCRBatchMoveProgresseEvent;

Remarks

Write the OnBatchMoveProgress event handler to provide feedback to the user about the
batch operation progress.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Types

Types in the CRBatchMove unit.

Types
Name Description
This type is used for the
TCRBatchMoveProgressEvent TCRBatchMove.OnBatchMo
veProgress event.
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TCRBatchMoveProgressEvent Procedure Reference

This type is used for the TCRBatchMove.OnBatchMoveProgress event.

Unit
CRBatchMove

Syntax

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 144

TCRBatchMoveProgressevent = procedure (Sender: TObject; Percent:
integer) of object;

Parameters

Sender
An object that raised the event.

Percent
Percentage of the batch operation progress.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.3 Enumerations

Enumerations in the CRBatchMove unit.

Enumerations

Name Description
Used to set the type of the
batch operation that will be

TCRBatchMode executed after calling the
TCRBatchMove.Execute
method.
Used to specify the way
fields of the destination and

TCRFieldMappingMode source datasets will be
mapped to each other if the
TCRBatchMove.Mappings
listis empty.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.2.3.1 TCRBatchMode Enumeration

Used to set the type of the batch operation that will be executed after calling the
TCRBatchMove.Execute method.

Unit

CRBatchMove

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

145 SQLite Data Access Components

Syntax

TCRBatchMode = (bmAppend, bmuUpdate, bmAppendupdate, bmbDelete);

Values
Value Meaning
bmAppend Appends the records from the source dataset to the destination

dataset. The default mode.

Replaces records in the destination dataset with the matching
bmAppendUpdate records from the source dataset. If there is no matching record in
the destination dataset, the record will be appended to it.
Deletes records from the destination dataset if there are
matching records in the source dataset.

bmUpdate Replaces records in the destination dataset with the matching
records from the source dataset.

bmbDelete

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.3.2 TCRFieldMappingMode Enumeration

Used to specify the way fields of the destination and source datasets will be mapped to each
other if the TCRBatchMove.Mappings list is empty.

Unit

CRBatchMove

Syntax

TCRFieldMappingMode = (mmFieldIndex, mmFieldName);

Values
Value Meaning
. Specifies that the fields of the destination dataset will be mapped
mmFieldindex to the fields of the source dataset by field index.
mmFieldName Mapping is performed by field names.
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 146

5.3

5.3.1

CREncryption

This unit contains base classes for data encryption.

Classes

Name

TCREncryptor

Enumerations

Name

TCREncDataHeader

TCREncryptionAlgorithm

TCRHashAlgorithm

TCRInvalidHashAction

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

Classes

Classes in the CREncryption unit.

Classes

Name

TCREncryptor

Description

The class that performs data
encryption and decryptionin
a client application using

various encryption
algorithms.

Description

Specifies whether the
additional information is
stored with the encrypted
data.

Specifies the algorithm of
data encryption.
Specifies the algorithm of
generating hash data.
Specifies the action to
perform on data fetching
when hash data is invalid.

Provide Feedback

Description

The class that performs data
encryption and decryptionin
a client application using
various encryption
algorithms.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

147 SQLite Data Access Components
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.
5.3.1.1 TCREncryptor Class

The class that performs data encryption and decryption in a client application using various
encryption algorithms.

For a list of all members of this type, see TCREncryptor members.

Unit
CREncryption

Syntax
TCREncryptor = class (TComponent);

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.3.1.1.1 Members

TCREncryptor class overview.

Properties
Name Description
Specifies whether the
DataHeader additional information is
- stored with the encrypted
data.
EncryptionAlgorithm Specifies the algorithm of
data encryption.
HashAlgorithm Specifies the algorithm of

generating hash data.
Specifies the action to
perform on data fetching
when hash data is invalid.
Used to set a password that
is used to generate a key for
encryption.

InvalidHashAction

Password

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 148

Methods

Name Description

SetKey Sets a key, using which data
is encrypted.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.3.1.1.2 Properties

Properties of the TCREnNcryptor class.

For a complete list of the TCREncryptor class members, see the TCREncryptor Members

topic.
Published
Name Description
Specifies whether the
DataHeader additional information is
stored with the encrypted
data.
EncryptionAlgorithm Specifies the algorithm of
data encryption.
HashAlgorithm Specifies the algorithm of

generating hash data.

Specifies the action to
perform on data fetching
when hash data is invalid.
Used to set a password that
is used to generate a key for
encryption.

InvalidHashAction

Password

See Also
e TCREnNcryptor Class

e TCREnNcryptor Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

149 SQLite Data Access Components

5.3.1.1.2.1 DataHeader Property

Specifies whether the additional information is stored with the encrypted data.

Class
TCREncryptor

Syntax
property DataHeader: TCREncDataHeader default ehTagAndHash;

Remarks

Use DataHeader to specify whether the additional information is stored with the encrypted
data. Default value is ehnTagAndHash.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.1.1.2.2 EncryptionAlgorithm Property

Specifies the algorithm of data encryption.

Class
TCREncryptor

Syntax

property EncryptionAlgorithm: TCREncryptionAlgorithm default
eaBlowfish;

Remarks

Use EncryptionAlgorithm to specify the algorithm of data encryption. Default value is
eaBlowfish.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 150

5.3.1.1.2.3 HashAlgorithm Property

Specifies the algorithm of generating hash data.

Class
TCREncryptor

Syntax
property HashAlgorithm: TCRHashAlgorithm default haSHAL;

Remarks

Use HashAlgorithm to specify the algorithm of generating hash data. This property is used
only if hash is stored with the encrypted data (the DataHeader property is set to
ehTagAndHash). Default value is haSHA1.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.1.1.2.4 InvalidHashAction Property

Specifies the action to perform on data fetching when hash data is invalid.

Class
TCREncryptor

Syntax
property InvalidHashAction: TCRInvalidHashAction default ihFail;

Remarks

Use InvalidHashAction to specify the action to perform on data fetching when hash data is
invalid. This property is used only if hash is stored with the encrypted data (the DataHeader
property is set to ehnTagAndHash). Default value is ihFail.

If the DataHeader property is set to enTagAndHash, then on data fetching from a server the
hash check is performed for each record. After data decryption its hash is calculated and
compared with the hash stored in the field. If these values don't coincide, it means that the
stored data is incorrect, and depending on the value of the InvalidHashAction property one of

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

151 SQLite Data Access Components

the following actions is performed:

ihFail - the ElnvalidHash exception is raised and further data reading from the server is
interrupted.

ihSkipData - the value of the field for this record is set to Null. No exception is raised.

ihignoreError - in spite of the fact that the data is not valid, the value is set in the field. No
exception is raised.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.1.1.2.5 Passw ord Property

Used to set a password that is used to generate a key for encryption.

Class
TCRENncryptor

Syntax

property Password: string stored False;

Remarks

Use Password to set a password that is used to generate a key for encryption.

Note: Calling of the SetKey method clears the Password property.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.1.1.3 Methods

Methods of the TCREncryptor class.

For a complete list of the TCREncryptor class members, see the TCREncryptor Members

topic.
Public

Name Description

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 152

SetKey Sets a key, using which data
is encrypted.
See Also

e TCREnNcryptor Class

e TCREnNcryptor Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.1.1.3.1 SetKey Method

Sets a key, using which data is encrypted.

Class

TCRENncryptor

Syntax

procedure Setkey(const Key; Count: Integer); overload;procedure
Setkey(const Key: TBytes; Offset: Integer; Count: Integer);
overload;

Parameters
Key
Holds bytes that represent a key.

Offset
Offset in bytes to the position, where the key begins.
Count

Number of bytes to use from Key.
Remarks

Use SetKey to set a key, using which data is encrypted.

Note: Calling of the SetKey method clears the Password property.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

153 SQLite Data Access Components

5.3.2 Enumerations

Enumerations in the CREncryption unit.

Enumerations
Name Description
Specifies whether the
TCREncDataHeader additional information is
stored with the encrypted
data.
TCREncryptionAlgorithm Specifies the algorithm of
data encryption.
TCRHashAlgorithm Specifies the algorithm of

generating hash data.
Specifies the action to
perform on data fetching
when hash data is invalid.

TCRInvalidHashAction

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.2.1 TCREncDataHeader Enumeration
Specifies whether the additional information is stored with the encrypted data.

Unit

CREncryption

Syntax
TCREncDataHeader = (ehTagAndHash, ehTag, ehNone);

Values

Value Meaning

ehNone No additional information is stored.

ehTag GUID and the random initialization vector are stored with the

encrypted data.

ehTagAndHash Hash, GUID, and the random initialization vector are stored with
the encrypted data.

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 154

Devart. All Rights
Reserved.

5.3.2.2 TCREncryptionAlgorithm Enumeration

Specifies the algorithm of data encryption.

Unit

CREncryption

Syntax

TCREncryptionAlgorithm = (eaTripleDES, eaBlowfish, eaAES128,
eaAES192, eaAES256, eaCastl28, eaRC4);

Values

Value
eaAES128
eaAES192
eaAES256
eaBlowfish

eaCast128

eaRC4
eaTripleDES

© 1997-2024
Devart. All Rights
Reserved.

Meaning

The AES encryption algorithm with key size of 128 bits is used.
The AES encryption algorithm with key size of 192 bits is used.
The AES encryption algorithm with key size of 256 bits is used.
The Blowfish encryption algorithm is used.

The CAST-128 encryption algorithm with key size of 128 bits is
used.

The RC4 encryption algorithm is used.
The Triple DES encryption algorithm is used.

Request Support DAC Forum Provide Feedback

5.3.2.3 TCRHashAlgorithm Enumeration

Specifies the algorithm of generating hash data.

Unit
CREncryption

Syntax
TCRHashAlgorithm

= (haSHAl, hamD5);

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

155

SQLite Data Access Components

5.3.24

54

Values

Value Meaning

haMD5 The MD5 hash algorithm is used.

haSHA1 The SHA-1 hash algorithm is used.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TCRInvalidHashAction Enumeration
Specifies the action to perform on data fetching when hash data is invalid.

Unit

CREncryption

Syntax

TCRInvalidHashAction = (ihFail, ihSkipbata, ihIgnoreError);

Values
Value Meaning
ihFail The ElnvalidHash exception is raised and further data reading

from the server is interrupted.

In spite of the fact that the data is not valid, the value is set in the

thignoreError field. No exception s raised.

ihSkipData The value of the field for this record is set to Null. No exception is
raised.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

DAAlerter

This unit contains the base class for the TLiteAlerter component.

Classes

Name Description

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 156

541

5.4.1.1

TDAAlerter

Types

Name
TAlerterErrorEvent

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

Classes

Classes in the DAAlerter unit.

Classes

Name

TDAAlerter

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

TDAAlerter Class

A base class that defines
functionality for database
event notification.

Description

This type is used for the
TDAAIlerter.OnError event.

Provide Feedback

Description

A base class that defines
functionality for database
event notification.

Provide Feedback

A base class that defines functionality for database event notification.

For a list of all members of this type, see TDAAlerter members.

Unit
DAAlerter

Syntax

TDAAlerter = class(TComponent);

Remarks

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

157 SQLite Data Access Components

TDAAlerter is a base class that defines functionality for descendant classes support database
event notification. Applications never use TDAAlerter objects directly. Instead they use
descendants of TDAAlerter.

The TDAAlerter component allows you to register interest in and handle events posted by a
database server. Use TDAAlerter to handle events for responding to actions and database
changes made by other applications. To get events, an application must register required
events. To do this, set the Events property to the required events and call the Start method.
When one of the registered events occurs OnEvent handler is called.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.4.1.1.1 Members

TDAAlerter class overview.

Properties
Name Description
. Used to determine if

Active TDAAlerter waits for

messages.
_ Used to automatically

AutoRegister register events whenever
connection opens.

Connection Used to SpeCify the
connection for TDAAlerter.

Methods

Name Description

SendEvent Sends an event with Name
and content Message.

Start Starts waiting process.

Stop Stops waiting process.

Events

Name Description

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 158

OnError Occurs if an exception
occurs in waiting process

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.4.1.1.2 Properties

Properties of the TDAAlerter class.

For a complete list of the TDAAlerter class members, see the TDAAlerter Members topic.

Public
Name Description
, Used to determine if

Active TDAAlerter waits for

messages.
, Used to automatically

AutoRegister register events whenever
connection opens.

Connection Used to specify the

- connection for TDAAlerter.

See Also

e TDAAlerter Class

e TDAAlerter Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.4.1.1.2.1 Active Property

Used to determine if TDAAlerter waits for messages.

Class

TDAAlerter

Syntax
property Active: boolean default False;

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

159

SQLite Data Access Components

54.1.1.22

54.1.1.23

Remarks

Check the Active property to know whether TDAlerter waits for messages or not. Set it to
True to register events.

See Also
e Start

e Stop

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

AutoRegister Property

Used to automatically register events whenever connection opens.

Class
TDAAlerter

Syntax
property AutoRegister: boolean default False;

Remarks

Set the AutoRegister property to True to automatically register events whenever connection
opens.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Connection Property

Used to specify the connection for TDAAlerter.

Class

TDAAlerter

Syntax

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 160

property Connection: TCustomDAConnection;

Remarks
Use the Connection property to specify the connection for TDAAlerter.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.4.1.1.3 Methods

Methods of the TDAAlerter class.

For a complete list of the TDAAlerter class members, see the TDAAlerter Members topic.

Public

Name Description

SendEvent Sends an event with Name
and content Message.

Start Starts waiting process.

Stop Stops waiting process.

See Also

e TDAAlerter Class

e TDAAlerter Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.4.1.1.3.1 SendEvent Method

Sends an event with Name and content Message.

Class
TDAAlerter

Syntax

procedure SendeEvent(const EventName: string; const Message:

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

161

SQLite Data Access Components

541132

string);

Parameters

EventName
Holds the event name.

Message
Holds the content Message of the event.

Remarks
Use SendEvent procedure to send an event with Name and content Message.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Start Method

Starts waiting process.

Class
TDAAlerter

Syntax
procedure Start;

Remarks

Call the Start method to run waiting process. After starting TDAAlerter waits for messages
with names defined by the Events property.

See Also
e Stop

e Active

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 162

5.4.1.1.3.3 Stop Method

Stops waiting process.

Class
TDAAlerter

Syntax

procedure Stop;

Remarks

Call Stop method to end waiting process.

See Also
e Start

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.4.1.1.4 Events

Events of the TDAAlerter class.

For a complete list of the TDAAlerter class members, see the TDAAlerter Members topic.

Public

Name Description

OnError Occurs if an exception
occurs in waiting process

See Also

e TDAAlerter Class

e TDAAlerter Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

163

SQLite Data Access Components

5.4.1.1.4.1 OnError Event

5.4.2

5.4.2.1

Occurs if an exception occurs in waiting process

Class
TDAAlerter

Syntax

property OnError: TAlerterErrorgvent;

Remarks

The OnError event occurs if an exception occurs in waiting process. Alerter stops in this
case. The exception can be accessed using the E parameter.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Types

Types in the DAAlerter unit.

Types

Name Description

TAlerterErrorEvent This type is used for the
TDAAlerter.OnError event.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

TAlerterErrorEvent Procedure Reference

This type is used for the TDAAlerter.OnError event.

Unit

DAAlerter

Syntax

TAlerterErroreEvent = procedure (Sender: TDAAlerter; E: Exception)

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 164

5.5

of object;

Parameters

Sender

An object that raised the event.
E

Exception object.

© 1997-2024
Devart. All Rights

Request Support

DAC Forum

Reserved.

DADump

Provide Feedback

This unit contains the base class for the TLiteDump component.

Classes

Name

TDADump

TDADumpOptions

Types

Name

TDABackupProgressEvent

TDARestoreProgressEvent

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

Description

A base class that defines
functionality for descendant
classes that dump database
objects to a script.

This class allows setting up
the behaviour of the
TDADump class.

Description

This type is used for the
TDADump.OnBackupProgr
ess event.

This type is used for the
TDADump.OnRestoreProgr
ess event.

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

165

SQLite Data Access Components

5.5.1

5.5.1.1

Classes

Classes in the DADump unit.

Classes

Name Description
A base class that defines

TDADump functionality for descendant
classes that dump database
objects to a script.

. This class allows setting up

TDADumpOptions the behaviour of the
TDADump class.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

TDADump Class

A base class that defines functionality for descendant classes that dump database objects to
a script.

For a list of all members of this type, see TDADump members.

Unit
DADUMp

Syntax
TDADump = class (TComponent);

Remarks

TDADump is a base class that defines functionality for descendant classes that dump
database objects to a script. Applications never use TDADump objects directly. Instead they
use descendants of TDADump.

Use TDADump descedants to dump database objects, such as tables, stored procedures,
and functions for backup or for transferring the data to another SQL server. The dump
contains SQL statements to create the table or other database objects and/or populate the
table.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 166

© 1997-2024
Devart. All Rights
Reserved.

5.5.1.1.1 Members

TDADump class overview.

Properties

Name

Connection

Debug

Options

SQL

TableNames

Methods

Name

Backup

BackupQuery

BackupToFile

BackupToStream

Restore

RestoreFromFile

RestoreFromStream

Request Support DAC Forum

Provide Feedback

Description

Used to specify a
connection object that will be
used to connect to a data
store.

Used to display the
statement that is being
executed and the values and
types of its parameters.
Used to specify the
behaviour of a TDADump
component.

Used to set or get the dump
script.

Used to set the names of the
tables to dump.

Description

Dumps database objects to
the TDADump.SQL
property.

Dumps the results of a
particular query.

Dumps database objects to
the specified file.

Dumps database obijects to
the stream.

Executes a script contained
in the SQL property.

Executes a script from a file.

Executes a script received

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

167

SQLite Data Access Components

Events

Name

OnBackupProgress

OnError

OnRestoreProgress

© 1997-2024
Devart. All Rights Request Support DAC Forum

Reserved.

5.5.1.1.2 Properties

Properties of the TDADump class.

from the stream.

Description

Occurs to indicate the
TDADump.Backup,
M:Devart.Dac.TDADump.Ba
ckupToFile(System.String)
or

M:Devart.Dac. TDADump.Ba
ckupToStream(Borland.Vcl.
TStream) method execution
progress.

Occurs when SQLite raises
some error on
TDADump.Restore.

Occurs to indicate the
TDADump.Restore,
TDADump.RestoreFromFile
, or
TDADump.RestoreFromStr
eam method execution
progress.

Provide Feedback

For a complete list of the TDADump class members, see the TDADump Members topic.

Public
Name

Connection

Options

Description

Used to specify a
connection object that will be
used to connect to a data
store.

Used to specify the
behaviour of a TDADump

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 168

component.

Published

Name Description
Used to display the

Debug statement that is being
executed and the values and
types of its parameters.

SQL Used to set or get the dump
script.

TableNames Used to set the names of the
tables to dump.

See Also

e TDADump Class

e TDADump Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.5.1.1.2.1 Connection Property

Used to specify a connection object that will be used to connect to a data store.

Class
TDADUMp

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a
data store.

Set at design-time by selecting from the list of provided TCustomDAConnection or its
descendant class objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

169

SQLite Data Access Components

55.1.1.2.2

property.

See Also
e TCustomDAConnection

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Debug Property

Used to display the statement that is being executed and the values and types of its
parameters.

Class

TDADUMp

Syntax
property Debug: boolean default False;

Remarks
Set the Debug property to True to display the statement that is being executed and the values

and types of its parameters.

You should add the LiteDacVcl unit to the uses clause of any unit in your project to make the
Debug property work.

Note: If TLiteSQLMonitor is used in the project and the TLiteSQLMonitor.Active property is set

to False, the debug window is not displayed.

See Also
e TCustomDADataSet.Debug

e TCustomDASQL.Debug

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 170

5.5.1.1.2.3 Options Property

55.1.1.24

Used to specify the behaviour of a TDADump component.

Class
TDADUMp

Syntax

property Options: TDADumpOptions;

Remarks

Use the Options property to specify the behaviour of a TDADump component.

Descriptions of all options are in the table below.

Option Name

AddDrop

Completelnsert

GenerateHeader

QuoteNames

© 1997-2024

Devart. All Rights Request Support

Description

Used to add drop statements to a script
before creating statements.

Used to explicitly specify the table fields
names when generating the INSERT SQL
query. The default value is False.

Used to add a comment header to a script.

Used for TDADump to quote all database
object names in generated SQL
statements.

DAC Forum Provide Feedback

Reserved.

SQL Property

Used to set or get the dump script.

Class

TDADUMp

Syntax
property SQL: TStrings;

Remarks

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

171

SQLite Data Access Components

55.1.1.25

Use the SQL property to get or set the dump script. The SQL property stores script that is

executed by the Restore method. This property will store the result of Backup and

in Object Inspector.

See Also
e Restore

e Backup

e BackupQuery

© 1997-2024
Devart. All Rights Request Support

BackupQuery. At design time the SQL property can be edited by invoking the String List editor

DAC Forum Provide Feedback

Reserved.

TableNames Property

Used to set the names of the tables to dump.

Class

TDADUMp

Syntax
property TableNames: string;

Remarks

Use the TableNames property to set the names of the tables to dump. Table names must be

separated with semicolons. If the property is empty, the Backup method will dump all

available tables.

See Also
e Backup

© 1997-2024
Devart. All Rights Request Support

DAC Forum Provide Feedback

Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 172

5.5.1.1.3 Methods

Methods of the TDADump class.

For a complete list of the TDADump class members, see the TDADump Members topic.

Public
Name Description
Dumps database objects to
Backup the TDADump.SQL
property.
BackupQuery Dumps the results of a
particular query.
BackupToFile Dumps database objects to
the specified file.
BackupToStream Dumps database objects to
the stream.
Restore Executes a script contained
- in the SQL property.

RestoreFromFile Executes a script from a file.

RestoreFromStream Executes a script received
from the stream.

See Also
e TDADump Class

e TDADump Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.1.3.1 Backup Method

Dumps database objects to the SQL property.

Class

TDADUMp

Syntax
procedure Backup;

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

173

SQLite Data Access Components

55.1.1.32

Remarks

Call the Backup method to dump database objects. The result script will be stored in the SQL
property.

See Also
e SQL

e Restore

e BackupToFile

e BackupToStream

e BackupQuery

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

BackupQuery Method

Dumps the results of a particular query.

Class

TDADUMp

Syntax
procedure BackupQuery(const Query: string);

Parameters

Query
Holds a query used for data selection.

Remarks

Call the BackupQuery method to dump the results of a particular query. Query must be a
valid select statement. If this query selects data from several tables, only data of the first table
in the from list will be dumped.

See Also
e Restore

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 174

e Backup
e BackupToFile

e BackupToStream

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.1.3.3 BackupToFile Method

Dumps database objects to the specified file.

Class
TDADUMp

Syntax

procedure BackupToFile(const FileName: string; const Query:
string = '');

Parameters

FileName
Holds the file name to dump database objects to.

Query
Your query to receive the data for dumping.

Remarks

Call the BackupToFile method to dump database objects to the specified file.

See Also
e RestoreFromStream

e Backup

e BackupToStream

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

175 SQLite Data Access Components

5.5.1.1.3.4 BackupToStream Method

Dumps database objects to the stream.

Class
TDADUMp

Syntax

procedure BackupToStream(Stream: TStream; const Query: string =
r

Parameters

Stream
Holds the stream to dump database objects to.

Query
Your query to receive the data for dumping.

Remarks

Call the BackupToStream method to dump database objects to the stream.

See Also
e RestoreFromStream

e Backup

e BackupToFile

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.5.1.1.3.5 Restore Method

Executes a script contained in the SQL property.

Class

TDADUMp

Syntax

procedure Restore;

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 176

55.1.1.3.6

Remarks

Call the Restore method to execute a script contained in the SQL property.

See Also
e RestoreFromFile

e RestoreFromStream

e Backup
e SQL

© 1997-2024

Devart. All Rights Request Support

DAC Forum Provide Feedback

Reserved.

RestoreFromFile Method

Executes a script from a file.

Class

TDADUMP

Syntax

procedure RestoreFromFile(const FileName: string);
overload;procedure RestoreFromFile(const FileName: string;

Encoding: TEncoding); overload;

Parameters
FileName

Holds the file name to execute a script from.

Remarks

Call the RestoreFromFile method to execute a script from the specified file.

See Also
e Restore

e RestoreFromStream

e BackupToFile

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

177 SQLite Data Access Components

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.1.3.7 RestoreFromStream Method

Executes a script received from the stream.

Class
TDADUMp

Syntax

procedure RestoreFromStream(Stream: TStream);

Parameters

Stream
Holds a stream to receive a script to be executed.

Remarks

Call the RestoreFromStream method to execute a script received from the stream.

See Also
e Restore

e RestoreFromFile

e BackupToStream

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.1.4 Events

Events of the TDADump class.

For a complete list of the TDADump class members, see the TDADump Members topic.

Published
Name Description
OnBackupProgress Occurs to indicate the

TDADump.Backup,

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 178

5.5.1.1.41

M:Devart.Dac. TDADump.Ba
ckupToFile(System.String)
or
M:Devart.Dac.TDADump.Ba
ckupToStream(Borland.Vcl.
TStream) method execution
progress.
Occurs when SQLite raises
OnError some error on
TDADump.Restore.
Occurs to indicate the
TDADump.Restore,
TDADump.RestoreFromFile
OnRestoreProgress or
TDADump.RestoreFromStr
eam method execution
progress.

See Also
e TDADump Class

e TDADump Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

OnBackupProgress Event

Occurs to indicate the Backup, M:Devart.Dac. TDADump.BackupToFile(System.String) or
M:Devart.Dac. TDADump.BackupToStream(Borland.Vcl.TStream) method execution
progress.

Class

TDADUMp

Syntax
property onBackupProgress: TDABackupProgressgevent;

Remarks

The OnBackupProgress event occurs several times during the dumping process of the

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

179

SQLite Data Access Components

55.1.14.2

Backup, M:Devart.Dac. TDADump.BackupToFile(System.String), or

M:Devart.Dac. TDADump.BackupToStream(Borland.Vcl.TStream) method execution and
indicates its progress. ObjectName parameter indicates the name of the currently dumping
database object. ObjectNum shows the number of the current database object in the backup
queue starting from zero. ObjectCount shows the quantity of database objects to dump.
Percent parameter shows the current percentage of the current table data dumped, not the
current percentage of the entire dump process.

See Also
e Backup

e BackupToFile

e BackupToStream

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

OnError Event

Occurs when SQLite raises some error on Restore.

Class
TDADUMp

Syntax

property OnError: TOnErrorEvent;

Remarks

The OnError event occurs when SQLite raises some error on Restore.

Action indicates the action to take when the OnError handler exits. On entry into the handler,
Action is always set to eaException.

Note: You should add the DAScript module to the 'uses' list to use the OnError event handler.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 180

5.5.1.1.4.3 OnRestoreProgress Event

Occurs to indicate the Restore, RestoreFromFile, or RestoreFromStream method execution

progress.

Class
TDADUMp

Syntax

property OnRestoreProgress: TDARestoreProgressevent;

Remarks

The OnRestoreProgress event occurs several times during the dumping process of the
Restore, RestoreFromFile, or RestoreFromStream method execution and indicates its

progress. The Percent parameter of the OnRestoreProgress event handler indicates the
percentage of the whole restore script execution.

See Also
e Restore

e RestoreFromFile

e RestoreFromStream

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.2 TDADumpOptions Class

This class allows setting up the behaviour of the TDADump class.

For a list of all members of this type, see TDADumpOptions members.

Unit

DADUmp

Syntax
TDADuUmpOptions = class(TPersistent);

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

181 SQLite Data Access Components

Devart. All Rights
Reserved.

5.5.1.2.1 Members

TDADumpOptions class overview.

Properties

Name

AddDrop

Completelnsert

GenerateHeader

QuoteNames

© 1997-2024
Devart. All Rights Request Support DAC Forum
Reserved.

5.5.1.2.2 Properties

Properties of the TDADumpOptions class.

For a complete list of the TDADumpOptions class members,

Members topic.

Published

Name

AddDrop

Completelnsert

Description

Used to add drop
statements to a script before
creating statements.

Used to explicitly specify the
table fields names when
generating the INSERT SQL
query. The default value is
False.

Used to add a comment
header to a script.

Used for TDADump to quote
all database object names in
generated SQL statements.

Provide Feedback

see the TDADumpOptions

Description

Used to add drop
statements to a script before
creating statements.

Used to explicitly specify the
table fields names when
generating the INSERT SQL
query. The default value is

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 182

False.
GenerateHeader Used to add a comment
header to a script.

Used for TDADump to quote
QuoteNames all database object names in
generated SQL statements.

See Also
e TDADumpOptions Class

e TDADumpOptions Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.5.1.2.2.1 AddDrop Property

Used to add drop statements to a script before creating statements.

Class
TDADuUmpOptions

Syntax
property AddbDrop: boolean default True;

Remarks
Use the AddDrop property to add drop statements to a script before creating statements.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.5.1.2.2.2 Completeinsert Property

Used to explicitly specify the table fields names when generating the INSERT SQL query. The
default value is False.

Class

TDADumpOptions

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

183 SQLite Data Access Components

Syntax
property CompleteInsert: boolean default False;

Remarks

If the Completelnsert property is set to True, SQL query will include the field names, for

example:

INSERT INTO dept(deptno, dname, Toc) VALUES ('10', 'ACCOUNTING', 'NEW YORK')

If False, it won't include the field names, for example:

INSERT INTO dept VALUES ('10', 'ACCOUNTING', 'NEW YORK');

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.2.2.3 GenerateHeader Property

Used to add a comment header to a script.

Class

TDADumpOptions

Syntax
property GenerateHeader: boolean default True;

Remarks

Use the GenerateHeader property to add a comment header to a script. It contains script
generation date, DAC version, and some other information.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.2.2.4 QuoteNames Property

Used for TDADump to quote all database object names in generated SQL statements.

Class
TDADumpOptions

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 184

Syntax

property QuoteNames: boolean default False;

Remarks

If the QuoteNames property is True, TDADump quotes all database object names in
generated SQL statements.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.2 Types

Types in the DADump unit.

Types
Name Description
This type is used for the
TDABackupProgressEvent TDADump.OnBackupProgr
ess event.

This type is used for the

TDARestoreProgressEvent TDADump.OnRestoreProgr

ess event.
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.2.1 TDABackupProgressEvent Procedure Reference

This type is used for the TDADump.OnBackupProgress event.

Unit
DADUMp

Syntax

TDABackupProgressEvent = procedure (Sender: TObject; ObjectName:
string; ObjectNum: integer; ObjectCount: integer; Percent:
integer) of object;

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

185 SQLite Data Access Components

Parameters

Sender
An object that raised the event.
ObjectName
The name of the currently dumping database object.
ObjectNum
The number of the current database object in the backup queue starting from zero.
ObjectCount
The quantity of database objects to dump.
Percent
The current percentage of the current table data dumped.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.2.2 TDARestoreProgressEvent Procedure Reference

This type is used for the TDADump.OnRestoreProgress event.

Unit

DADUmp

Syntax

TDARestoreProgresseEvent = procedure (Sender: TObject; Percent:
integer) of object;

Parameters

Sender
An object that raised the event.
Percent

The percentage of the whole restore script execution.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6 DALoader

This unit contains the base class for the TLiteLoader component.

Classes

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 186

Name Description

TDAColumn Represents the attributes for
column loading.

TDAColumns Holds a collection of
TDAColumn objects.

TDALoader This class allows loading
external data into database.

TDALoaderOptions Allows loading external data
into database.

Types

Name Description
This type is used for the

TDAPutDataEvent TDALoader.OnPutData
event.
This type is used for the

TGetColumnDataEvent TDALoader.OnGetColumnD
ata event.
This type is used for the

TLoaderProgressEvent TDALoader.OnProgress
event.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.6.1 Classes

Classes in the DALoader unit.

Classes

Name Description

TDAColumn Represents the attributes for
column loading.

TDAColumns Holds a collection of
TDAColumn objects.

TDALoader This class allows loading
external data into database.

TDALoaderOptions Allows loading external data
into database.

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

187

SQLite Data Access Components

5.6.1.1

Devart. All Rights
Reserved.

TDAColumn Class

Represents the attributes for column loading.

For a list of all members of this type, see TDAColumn members.

Unit

DALoader

Syntax
TDACoTumn = class(TColTlectionItem);

Remarks

Each TDALoader uses TDAColumns to maintain a collection of TDAColumn objects.

TDAColumn object represents the attributes for column loading. Every TDAColumn object
corresponds to one of the table fields with the same name as its TDAColumn.Name property.

To create columns at design-time use the column editor of the TDALoader component.

See Also
e TDALoader

e TDAColumns

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.1.1 Members

TDAColumn class overview.

Properties

Name Description

FieldType Used to specify the types of
values that will be loaded.

Name Used to specify the field

name of loading table.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 188

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.1.2 Properties

Properties of the TDAColumn class.

For a complete list of the TDAColumn class members, see the TDAColumn Members topic.

Published

Name Description

FieldType Used to specify the types of
values that will be loaded.

Name Used to specify the field
name of loading table.

See Also

e TDAColumn Class

e TDAColumn Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.1.2.1 FieldType Property

Used to specify the types of values that will be loaded.

Class

TDACoTumn

Syntax
property FieldType: TFieldType default ftString;

Remarks

Use the FieldType property to specify the types of values that will be loaded. Field types for
columns may not match data types for the corresponding fields in the database table.
TDALoader will cast data values to the types of their fields.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

189

SQLite Data Access Components

5.6.1.1.2.2

5.6.1.2

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Name Property

Used to specify the field name of loading table.

Class
TDACoTumn

Syntax
property Name: string;

Remarks

Each TDAColumn corresponds to one field of the loading table. Use the Name property to
specify the name of this field.

See Also
e FieldType
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TDAColumns Class

Holds a collection of TDAColumn objects.

For a list of all members of this type, see TDAColumns members.

Unit

DALoader

Syntax

TDACoTumns = class(TownedCollection);

Remarks

Each TDAColumns holds a collection of TDAColumn objects. TDAColumns maintains an

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 190

index of the columns in its ltems array. The Count property contains the number of columns
in the collection. At design-time, use the Columns editor to add, remove, or modify columns.

See Also
e TDALoader

e TDAColumn

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.2.1 Members

TDAColumns class overview.

Properties

Name Description

tems Used to access individual
columns.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.6.1.2.2 Properties

Properties of the TDAColumns class.

For a complete list of the TDAColumns class members, see the TDAColumns Members

topic.

Public

Name Description

ltems Used to access individual
columns.

See Also

e TDAColumns Class

e TDAColumns Class Members

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

191

SQLite Data Access Components

© 1997-2024
Devart. All Rights Request Support DAC Forum
Reserved.

5.6.1.2.2.1 ltems Property(Indexer)

5.6.1.3

Used to access individual columns.

Class

TDACOoTumns

Syntax

Provide Feedback

property Items[Index: integer]: TDAColumn; default;

Parameters

Index
Holds the Index of TDAColumn to refer to.

Remarks

Use the ltems property to access individual columns. The value of the Index parameter

corresponds to the Index property of TDAColumn.

See Also
e TDAColumn

© 1997-2024
Devart. All Rights Request Support DAC Forum
Reserved.

TDALoader Class

This class allows loading external data into database.

For a list of all members of this type, see TDALoader members.

Unit

DALoader

Syntax
TDALoader = class (TComponent);

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 192

Remarks

TDALoader allows loading external data into database. To specify the name of loading table

set the TDALoader.TableName property. Use the TDALoader.Columns property to access

individual columns. Write the TDALoader.OnGetColumnData or TDALoader.OnPutData event
handlers to read external data and pass it to the database. Call the TDALoader.Load method

to start loading data.

© 1997-2024
Devart. All Rights
Reserved.

5.6.1.3.1 Members

TDALoader class overview.

Properties

Name

Columns

Connection

TableName

Methods
Name

CreateColumns

Load

LoadFromDataSet

PutColumnData

Request Support DAC Forum

Provide Feedback

Description

Used to add a TDAColumn
object for each field that will
be loaded.

property. Used to specify
TCustomDAConnectionin
which TDALoader will be
executed.

Used to specify the name of
the table to which data will
be loaded.

Description

Creates TDAColumn
objects for all fields of the
table with the same name
as TDALoader.TableName.

Starts loading data.

Loads data from the
specified dataset.
Overloaded. Puts the value
of individual columns.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

193 SQLite Data Access Components

Events

Name
OnGetColumnData

OnProgress

OnPutData

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

5.6.1.3.2 Properties

Properties of the TDALoader class.

Description

Occurs when itis needed to
put column values.

Occurs if handling data
loading progress of the
TDALoader.LoadFromData
Set method is needed.
Occurs when putting loading
data by rows is needed.

Provide Feedback

For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

Name

Columns

Connection

TableName

See Also
e TDALoader Class

e TDALoader Class Members

© 1997-2024
Devart. All Rights Request Support

DAC Forum

Reserved.

Description

Used to add a TDAColumn
object for each field that will
be loaded.

property. Used to specify
TCustomDAConnectionin
which TDALoader will be
executed.

Used to specify the name of
the table to which data will
be loaded.

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 194

5.6.1.3.2.1 Columns Property

Used to add a TDAColumn object for each field that will be loaded.

Class
TDALoader

Syntax

property Columns: TDAColumns stored IsColumnsStored;

Remarks
Use the Columns property to add a TDAColumn object for each field that will be loaded.

See Also
e TDAColumns

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.3.2.2 Connection Property

property. Used to specify TCustomDAConnection in which TDALoader will be executed.

Class

TDALoader

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify TCustomDAConnection in which TDALoader will be
executed. If Connection is not connected, the Load method calls
TCustomDAConnection.Connect.

See Also
e TCustomDAConnection

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

195

SQLite Data Access Components

Devart. All Rights
Reserved.

5.6.1.3.2.3 TableName Property

Used to specify the name of the table to which data will be loaded.

Class

TDALoader

Syntax
property TableName: string;

Remarks

Set the TableName property to specify the name of the table to which data will be loaded. Add
TDAColumn objects to Columns for the fields that are needed to be loaded.

See Also
e TDAColumn

e TCustomDAConnection.GetTableNames

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.3.3 Methods

Methods of the TDALoader class.

For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public
Name Description
Creates TDAColumn
CreateColumns objects for all fields of the
table with the same name
as TDALoader.TableName.
Load Starts loading data.
LoadFromDataSet Loads data from the

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 196

specified dataset.

PutColumnData Overloaded. Puts the value
of individual columns.

See Also
e TDALoader Class

e TDALoader Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.3.3.1 CreateColumns Method

Creates TDAColumn objects for all fields of the table with the same name as TableName.

Class
TDALoader

Syntax

procedure CreatecColumns;

Remarks

Call the CreateColumns method to create TDAColumn objects for all fields of the table with
the same name as TableName. If columns were created before, they will be recreated. You
can call CreateColumns from the component popup menu at design-time. After you can
customize column loading by setting properties of TDAColumn objects.

See Also
e TDAColumn

e TableName

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

197

SQLite Data Access Components

5.6.1.3.3.2

5.6.1.3.3.3

Load Method

Starts loading data.

Class

TDALoader

Syntax

procedure Load; virtual;

Remarks

Call the Load method to start loading data. At first it is necessary to create columns and write

one of the OnPutData or OnGetColumnData event handlers.

See Also
e OnGetColumnData

e OnPutData

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

LoadFromDataSet Method

Loads data from the specified dataset.

Class

TDALoader

Syntax
procedure LoadFrombataSet(DataSet: TDataSet);

Parameters

DataSet
Holds the dataset to load data from.

Remarks

Call the LoadFromDataSet method to load data from the specified dataset. There is no need

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 198

to create columns and write event handlers for OnPutData and OnGetColumnData before
calling this method.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.3.3.4 PutColumnData Method

Puts the value of individual columns.

Class
TDALoader

Overload List

Name Description

PutColumnData(Col: integer; Row: integer; |Puts the value of individual columns by the
const Value: variant) column index.

PutColumnData(const ColName: string; |Puts the value of individual columns by the
Row: integer; const Value: variant) column name.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Puts the value of individual columns by the column index.

Class
TDALoader

Syntax

procedure PutColumnData(Col: integer; Row: integer; const Value:
variant); overload; virtual;

Parameters
Col
Holds the index of a loading column. The first column has index 0.
Row
Holds the number of loading row. Row starts from 1.
Value

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

199 SQLite Data Access Components

Holds the column value.

Remarks

Call the PutColumnData method to put the value of individual columns. The Col parameter
indicates the index of loading column. The first column has index 0. The Row parameter
indicates the number of the loading row. Row starts from 1.

This overloaded method works faster because it searches the right index by its index, not by
the index name.

The value of a column should be assigned to the Value parameter.

See Also

e TDALoader.OnPutData

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Puts the value of individual columns by the column name.

Class
TDALoader

Syntax

procedure PutColumnData(const ColName: string; Row: integer;
const value: variant); overload;

Parameters

ColName

Hods the name of a loading column.
Row

Holds the number of loading row. Row starts from 1.
Value

Holds the column value.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 200

5.6.1.3.4 Events

5.6.1.3.4.1

Events of the TDALoader class.

For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public
Name Description
OnGetColumnData Occurs wheniitis needed to

put column values.
Occurs if handling data

OnProgress loading progress of the
=nETodiess TDALoader.LoadFromData

Set method is needed.

OnPutData Occurs when putting loading
data by rows is needed.

See Also
e TDALoader Class

e TDALoader Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

OnGetColumnData Event

Occurs when it is needed to put column values.

Class

TDALoader

Syntax
property oOnGetColumnData: TGetColumnDataEvent;

Remarks

Write the OnGetColumnData event handler to put column values. TDALoader calls the
OnGetColumnData event handler for each column in the loop. Column points to a
TDAColumn object that corresponds to the current loading column. Use its Name or Index

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

201

SQLite Data Access Components

5.6.1.34.2

property to identify what column is loading. The Row parameter indicates the current loading
record. TDALoader increments the Row parameter when all the columns of the current
record are loaded. The first row is 1. Set EOF to True to stop data loading. Fill the Value
parameter by column values. To start loading call the Load method.

Another way to load data is using the OnPutData event.

Example
This handler loads 1000 rows.

procedure TfmMain.GetColumnData(Sender: TObject;
Column: TDAColumn; Row: Integer; var Vvalue: variant;
var EOF: Boolean);
begin
if Row <= 1000 then begin
case Column.Index o

0: value := Row;
1: value := Random(100);
2: value := Random*100;
3: value := 'abc01234567890123456789";
4: value := Date;
else
value := Null;
end;
end
else
EOF := True;
end;
See Also
e OnPutData
e | oad
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.
OnProgress Event

Occurs if handling data loading progress of the LoadFromDataSet method is needed.

Class
TDALoader

Syntax

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 202

property OnProgress: TLoaderProgressgvent;

Remarks

Add a handler to this event if you want to handle data loading progress of the
LoadFromDataSet method.

See Also
e | oadFromDataSet

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.3.4.3 OnPutData Event

Occurs when putting loading data by rows is needed.

Class

TDALoader

Syntax
property OnPutData: TDAPutDataEvent;

Remarks
Write the OnPutData event handler to put loading data by rows.

Note that rows should be loaded from the first in the ascending order.

To start loading, call the Load method.

Example
This handler loads 1000 rows.

procedure TfmMain.PutData(Sender: TDALoader);
var

Count: Integer;

i: Integer;

begin
Count := StrToInt(edRows.Text);
for i := 1 to Count dobegin

Sender.PutColumnbata(0, i, 1);
Sender.PutColumnbata(l, i, Random(100));

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

203 SQLite Data Access Components

Sender.PutColumnbata(2, i, Random*100);
Sender.PutColumnbata(3, i, 'abc01234567890123456789"');
Sender.PutColumnbata(4, i, Date);
end;
end;

See Also
e TDALoader.PutColumnData

e | oad

e OnGetColumnData

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.4 TDALoaderOptions Class

Allows loading external data into database.

For a list of all members of this type, see TDALoaderOptions members.

Unit

DALoader

Syntax

TDALoaderoptions = class(TPersistent);

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.4.1 Members

TDALoaderOptions class overview.

Properties

Name Description
Forces LiteDAC to fill the

UseBlankValues buffer with null values after
loading a row to the
database.

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 204

Devart. All Rights
Reserved.

5.6.1.4.2 Properties

Properties of the TDALoaderOptions class.

For a complete list of the TDALoaderOptions class members, see the TDALoaderOptions

Members topic.

Public

Name Description
Forces LiteDAC to fill the

UseBlankValues buffer with null values after
loading a row to the
database.

See Also

e TDALoaderOptions Class

e TDALoaderOptions Class Members

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.6.1.4.2.1 UseBlankValues Property

Forces LiteDAC to fill the buffer with null values after loading a row to the database.

Class
TDALoaderOptions

Syntax
property UseBlankvalues: boolean default True;

Remarks
Used to force LiteDAC to fill the buffer with null values after loading a row to the database.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

205 SQLite Data Access Components

5.6.2 Types

Types in the DALoader unit.

Types
Name Description
This type is used for the
TDAPutDataEvent TDALoader.OnPutData
event.
This type is used for the
TGetColumnDataEvent TDALoader.OnGetColumnD
ata event.
This type is used for the
TLoaderProgressEvent TDALoader.OnProgress
event.
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.2.1 TDAPutDataEvent Procedure Reference

This type is used for the TDALoader.OnPutData event.

Unit
DALoader

Syntax

TDAPutDatakEvent = procedure (Sender: TDALoader) of object;

Parameters

Sender
An object that raised the event.
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.2.2 TGetColumnDataEvent Procedure Reference

This type is used for the TDALoader.OnGetColumnData event.

Unit

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 206

DALoader

Syntax

TGetColumnDataEvent = procedure (Sender: TObject; Column:
TDAColumn; Row: integer; var Value: variant; var ISEOF: boolean)
of object;

Parameters

Sender
An object that raised the event.
Column
Points to TDAColumn object that corresponds to the current loading column.
Row
Indicates the current loading record.
Value
Holds column values.
ISEOF
True, if data loading needs to be stopped.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.2.3 TLoaderProgressEvent Procedure Reference

This type is used for the TDALoader.OnProgress event.

Unit

DALoader

Syntax

TLoaderProgressEvent = procedure (Sender: TObject; Percent:
integer) of object;

Parameters
Sender
An object that raised the event.
Percent
Percentage of the load operation progress.
© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

207

SQLite Data Access Components

5.7

Devart. All Rights
Reserved.

DAScript

This unit contains the base class for the TLiteScript component.

Classes

Name

TDAScript

TDAStatement

TDAStatements

Types

Name

TAfterStatementExecuteEvent

TBeforeStatementExecuteEvent

TONErrorEvent

Enumerations

Name

TErrorAction

© 1997-2024
Devart. All Rights Request Support

DAC Forum

Description

Makes it possible to execute
several SQL statements one
by one.

This class has attributes and
methods for controlling
single SQL statement of a
script.

Holds a collection of
TDAStatement objects.

Reserved.

Description

This type is used for the
TDAScript. AfterExecute
event.

This type is used for the
TDAScript.BeforeExecute
event.

This type is used for the
TDAScript.OnError event.

Description

Indicates the action to take
when the OnError handler
exits.

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 208

571 Classes

Classes in the DAScript unit.

Classes
Name Description
) Makes it possible to execute

TDAScript several SQL statements one
by one.
This class has attributes and

TDAStatement methods for controlling
single SQL statement of a
script.

TDAStatements Holds a collection of
TDAStatement objects.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.1 TDAScript Class

Makes it possible to execute several SQL statements one by one.
For a list of all members of this type, see TDAScript members.

Unit
DAScript

Syntax
TDAScript = class (TComponent);

Remarks

Often it is necessary to execute several SQL statements one by one. This can be performed
using a lot of components such as TCustomDASQL descendants. Usually it isn't the best

solution. With only one TDAScript descedant component you can execute several SQL
statements as one. This sequence of statements is called script. To separate single
statements use semicolon (;) or slash (/) and for statements that can contain semicolon, only
slash. Note that slash must be the first character in line.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

209

SQLite Data Access Components

Errors that occur during execution can be processed in the TDAScript.OnError event handler.

By default, on error TDAScript shows exception and continues execution.

See Also
e TCustomDASQL

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.1.1 Members

TDAScript class overview.

Properties
Name Description
. Used to specify the
Connection connection in which the
script will be executed.
Refers to a dataset that
DataSet holds the result set of query
execution.
Used to display the script
Debug execution and all its
parameter values.
L Used to set the delimiter
Delimiter string that separates script
statements.
, Used to get the current
EndLine statement last line number in
a script.
Used to get the offset in the
EndOffset last line of the current
statement.
EndPos Used to get the end position
of the current statement.
Used to change SQL script
Macros text in design- or run-time
easily.
SQL Used to get or set script text.
StartLine Used to get the current

statement start line number

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 210

StartOffset

StartPos

Statements

Methods

Name
BreakExec

ErrorOffset

Execute

ExecuteFile

ExecuteNext

ExecuteStream

FindMacro

MacroByName

Events

Name
AfterExecute

BeforeExecute

OnError

in a script.

Used to get the offset in the
first line of the current
statement.

Used to get the start position
of the current statementin a
script.

Contains a list of statements
obtained from the SQL
property.

Description
Stops script execution.

Used to get the offset of the
statement if the Execute
method raised an exception.

Executes a script.

Executes SQL statements
contained in a file.

Executes the next statement
in the script and then stops.
Executes SQL statements
contained in a stream
object.

Finds a macro with the
specified name.

Finds a macro with the
specified name.

Description

Occurs after a SQL script
execution.

Occurs when taking a
specific action before
executing the current SQL
statement is needed.

Occurs when SQLite raises

© 2024 Enter your company name

211

SQLite Data Access Components

© 1997-2024
Devart. All Rights

Reserved.

5.7.1.1.2 Properties

Properties of the TDAScript class.

Request Support DAC Forum

an error.

Provide Feedback

For a complete list of the TDAScript class members, see the TDAScript Members topic.

Public

Name

Connection

DataSet

EndLine

EndOffset

EndPos

StartLine

StartOffset

StartPos

Statements

Published

Description

Used to specify the
connection in which the
script will be executed.

Refers to a dataset that
holds the result set of query
execution.

Used to get the current
statement last line number in
a script.

Used to get the offset in the
last line of the current
statement.

Used to get the end position
of the current statement.

Used to get the current
statement start line number
ina script.

Used to get the offset in the
first line of the current
statement.

Used to get the start position
of the current statementin a
script.

Contains a list of statements
obtained from the SQL
property.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 212

5.7.1.1.21

Name Description
Used to display the script
Debug execution and all its

parameter values.
Used to set the delimiter

Delimiter string that separates script
statements.
Used to change SQL script
Macros text in design- or run-time
easily.
SQL Used to get or set script text.
See Also

e TDAScript Class

e TDAScript Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Connection Property

Used to specify the connection in which the script will be executed.

Class

TDAScript

Syntax
property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify the connection in which the script will be executed. If
Connection is not connected, the Execute method calls the Connect method of Connection.

Set at design-time by selecting from the list of provided TCustomDAConnection objects.

At run-time, set the Connection property to reference an existing TCustomDAConnection

object.

See Also

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

213

SQLite Data Access Components

571122

5.71.1.23

e TCustomDAConnection

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

DataSet Property

Refers to a dataset that holds the result set of query execution.

Class
TDAScript

Syntax
property DataSet: TCustomDADataSet;

Remarks

Set the DataSet property to retrieve the results of the SELECT statements execution inside a
script.

See Also
e ExecuteNext

e Execute

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Debug Property

Used to display the script execution and all its parameter values.

Class
TDASCript

Syntax
property Debug: boolean default False;

Remarks

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 214

Set the Debug property to True to display the statement that is being executed and the values
and types of its parameters.

You should add the LiteDacVcl unit to the uses clause of any unit in your project to make the
Debug property work.

Note: If TLiteSQLMonitor is used in the project and the TLiteSQLMonitor.Active property is set

to False, the debug window is not displayed.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.2.4 Delimiter Property

Used to set the delimiter string that separates script statements.

Class
TDAScript

Syntax
property Delimiter: string stored IsDelimiterStored;

Remarks

Use the Delimiter property to set the delimiter string that separates script statements. By
default it is semicolon (;). You can use slash (/) to separate statements that can contain
semicolon if the Delimiter property's default value is semicolon. Note that slash must be the
first character in line.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.2.5 EndLine Property

Used to get the current statement last line number in a script.

Class
TDAScript

Syntax

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

215 SQLite Data Access Components

property EndLine: Int64;

Remarks

Use the EndLine property to get the current statement last line number in a script.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.2.6 EndOffset Property

Used to get the offset in the last line of the current statement.

Class
TDAScCript

Syntax
property Endoffset: Int64;

Remarks

Use the EndOffset property to get the offset in the last line of the current statement.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.2.7 EndPos Property

Used to get the end position of the current statement.

Class
TDASCript

Syntax
property EndPos: Int64;

Remarks

Use the EndPos property to get the end position of the current statement (the position of the
last character in the statement) in a script.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 216

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.2.8 Macros Property

Used to change SQL script text in design- or run-time easily.

Class
TDAScript

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL script text in design- or run-time. Macros
extend abilities of parameters and allow changing conditions in the WHERE clause or sort
order in the ORDER BY clause. You just insert &MacroName in a SQL query text and change
value of macro by the Macro property editor in design-time or the MacroByName function in
run-time. In time of opening query macro is replaced by its value.

See Also
e TMacro

e MacroByName

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.2.9 SQL Property

Used to get or set script text.

Class
TDAScript

Syntax
property SQL: TStrings;

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

217 SQLite Data Access Components

Remarks

Use the SQL property to get or set script text.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.2.10 StartLine Property

Used to get the current statement start line number in a script.

Class
TDAScript

Syntax

property StartLine: Int64;

Remarks

Use the StartLine property to get the current statement start line number in a script.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.2.11 StartOffset Property

Used to get the offset in the first line of the current statement.

Class

TDAScCript

Syntax
property StartOffset: Int64;

Remarks

Use the StartOffset property to get the offset in the first line of the current statement.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 218

5.7.1.1.2.12 StartPos Property

Used to get the start position of the current statement in a script.

Class
TDAScript

Syntax
property StartPos: Int64;

Remarks

Use the StartPos property to get the start position of the current statement (the position of the
first statement character) in a script.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.2.13 Statements Property

Contains a list of statements obtained from the SQL property.

Class
TDASCript

Syntax
property Statements: TDAStatements;

Remarks

Contains a list of statements that are obtained from the SQL property. Use the Access
Statements property to view SQL statement, set parameters or execute the specified
statement. Statements is a zero-based array of statement records. Index specifies the array
element to access.

For example, consider the following script:

CREATE TABLE A (FIELD1 INTEGER);
INSERT INTO A VALUES(1l);
INSERT INTO A VALUES(2);
INSERT INTO A VALUES(3);
CREATE TABLE B (FIELD1 INTEGER);

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

219 SQLite Data Access Components

INSERT INTO B VALUES(1l);
INSERT INTO B VALUES(2);
INSERT INTO B VALUES(3);

Note: The list of statements is created and filled when the value of Statements property is

requested. That's why the first access to the Statements property can take a long time.

Example

You can use the Statements property in the following way:

procedure TForml.ButtonlClick(Sender: TObject);
var

i: integer;
begin

with script do

begin

for i := 0 to Statements.Count - 1 do
if Copy(Statements[i].sQL, 1, 6) <> 'CREATE' then
Statements[i].Execute;

end;

end;

See Also
e TDAStatements

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.3 Methods

Methods of the TDAScript class.

For a complete list of the TDAScript class members, see the TDAScript Members topic.

Public

Name Description

BreakExec Stops script execution.
Used to get the offset of the

ErrorOffset statement if the Execute
method raised an exception.

Execute Executes a script.

ExecuteFile Executes SQL statements

contained in a file.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 220

5.7.1.1.3.1

5.71.1.3.2

ExecuteNext

ExecuteStream

FindMacro

MacroByName

See Also
e TDAScript Class

e TDAScript Class Members

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

BreakExec Method

Stops script execution.

Class

TDASCript

Syntax

procedure BreakExec; virtual;

Remarks

Call the BreakExec method to stop script execution.

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

ErrorOffset Method

Executes the next statement
in the script and then stops.
Executes SQL statements
contained in a stream
object.

Finds a macro with the
specified name.

Finds a macro with the
specified name.

Provide Feedback

Provide Feedback

Used to get the offset of the statement if the Execute method raised an exception.

Class

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

221 SQLite Data Access Components

TDASCript

Syntax
function Erroroffset: Int64;

Return Value
offset of an error.

Remarks

Call the ErrorOffset method to get the offset of the statement if the Execute method raised an
exception.

See Also
e OnError

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.3.3 Execute Method

Executes a script.

Class
TDAScript

Syntax

procedure Execute; virtual;

Remarks

Call the Execute method to execute a script. If SQLite raises an error, the OnError event
occurs.

See Also
e ExecuteNext

e OnError

e ErrorOffset

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 222

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.1.3.4 ExecuteFile Method

Executes SQL statements contained in a file.

Class
TDAScript

Syntax

procedure ExecuteFile(const FileName: string);

Parameters

FileName
Holds the file name.

Remarks

Call the ExecuteFile method to execute SQL statements contained in a file. Script doesn't
load full content into memory. Reading and execution is performed by blocks of 64k size.
Therefore, it is optimal to use it for big files.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.1.3.5 ExecuteNext Method

Executes the next statement in the script and then stops.

Class
TDAScript

Syntax
function ExecuteNext: boolean; virtual;

Return Value
True, if there are any statements left in the script, False otherwise.

Remarks

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

223

SQLite Data Access Components

5.71.1.3.6

5.71.1.3.7

Use the ExecuteNext method to execute the next statement in the script statement and stop.
If SQLite raises an error, the OnError event occurs.

See Also
e Execute

e OnError

e ErrorOffset

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

ExecuteStream Method

Executes SQL statements contained in a stream object.

Class
TDAScript

Syntax

procedure ExecuteStream(Stream: TStream);

Parameters

Stream
Holds the stream object from which the statements will be executed.

Remarks

Call the ExecuteStream method to execute SQL statements contained in a stream object.
Reading from the stream and execution is performed by blocks of 64k size.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

FindMacro Method

Finds a macro with the specified name.

Class
TDAScCript

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 224

Syntax

function Findvacro(Name: string): TMacro;

Parameters

Name
Holds the name of a macro to search for.

Return Value
TMacro object if a match is found, nil otherwise.

Remarks

Call the FindMacro method to find a macro with the specified name. If a match is found,
FindMacro returns the macro. Otherwise, it returns nil. Use this method instead of a direct
reference to the TMacros.ltems property to avoid depending on the order of the items.

See Also
e TMacro

e Macros

e MacroByName

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.3.8 MacroByName Method

Finds a macro with the specified name.

Class
TDAScript

Syntax

function MacroByName(Name: string): TMacro;

Parameters

Name

Holds the name of a macro to search for.
Return Value

TMacro object if a match is found.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

225 SQLite Data Access Components

Remarks

Call the MacroByName method to find a macro with the specified name. If a match is found,
MacroByName returns the macro. Otherwise, an exception is raised. Use this method instead
of a direct reference to the TMacros.ltems property to avoid depending on the order of the

items.

To locate a parameter by name without raising an exception if the parameter is not found, use
the FindMacro method.

To set a value to a macro, use the TMacro.Value property.

See Also
e TMacro

e Macros

e FindMacro

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.1.4 Events

Events of the TDAScript class.

For a complete list of the TDAScript class members, see the TDAScript Members topic.

Published
Name Description
AfterExecute Occurs after a SQL script
execution.
Occurs when taking a
BeforeExecute specific action before
executing the current SQL
statement is needed.
OnError Occurs when SQLite raises
an error.
See Also

e TDAScript Class

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 226

e TDAScript Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.1.4.1 AfterExecute Event

Occurs after a SQL script execution.

Class
TDAScript

Syntax

property AfterExecute: TAfterStatementExecuteEvent;

Remarks

Ocecurs after a SQL script has been executed.

See Also
e Execute

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.1.4.2 BeforeExecute Event

Occurs when taking a specific action before executing the current SQL statement is needed.

Class
TDAScCript

Syntax

property BeforeExecute: TBeforeStatementExecuteEvent;

Remarks

Write the BeforeExecute event handler to take specific action before executing the current
SQL statement. SQL holds text of the current SQL statement. Write SQL to change the

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

227

SQLite Data Access Components

571143

5.7.1.2

statement that will be executed. Set Omit to True to skip statement execution.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

OnError Event

Occurs when SQLite raises an error.

Class
TDAScript

Syntax

property OnError: TOnErrorEvent;

Remarks
Occurs when SQLite raises an error.

Action indicates the action to take when the OnError handler exits. On entry into the handler,
Action is always set to eaFail.

See Also
e ErrorOffset

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TDAStatement Class

This class has attributes and methods for controlling single SQL statement of a script.

For a list of all members of this type, see TDAStatement members.

Unit

DAScript

Syntax
TDAStatement = class(TCollectionItem);

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 228

Remarks

TDAScript contains SQL statements, represented as TDAStatement objects. The

TDAStatement class has attributes and methods for controlling single SQL statement of a

script.

See Also
e TDAScript

e TDAStatements

© 1997-2024
Devart. All Rights

Request Support

DAC Forum

Reserved.

5.7.1.2.1 Members

TDAStatement class overview.

Properties

Name

EndLine

EndOffset
EndPos
Omit

Params
Script
SQL
StartLine

StartOffset

Provide Feedback

Description

Used to determine the
number of the last statement
line in a script.

Used to get the offset in the
last line of the statement.
Used to get the end position
of the statement in a script.
Used to avoid execution of a
statement.

Contains parasmeters for an
SQL statement.

Used to determine the
TDAScript object the SQL
Statement belongs to.

Used to get or set the text of
an SQL statement.

Used to determine the
number of the first statement
line in a script.

Used to get the offset in the
first line of a statement.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

229 SQLite Data Access Components

StartPos Used to get the start position
of the statement in a script.

Methods

Name Description

Execute Executes a statement.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.2.2 Properties

Properties of the TDAStatement class.

For a complete list of the TDAStatement class members, see the TDAStatement Members

topic.
Public
Name Description
, Used to determine the
EndLine number of the last statement
line in a script.
EndOffset Used to get the offset in the
- last line of the statement.
EndPos Used to get the end position
of the statement in a script.
Omit Used to avoid execution of a
- statement.
Params Contains parasmeters for an
SQL statement.
. Used to determine the
Script TDAScript object the SQL
Statement belongs to.
sSQL Used to get or set the text of
- an SQL statement.
. Used to determine the
StartLine number of the first statement
line in a script.
StartOffset Used to get the offset in the

first line of a statement.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 230

StartPos Used to get the start position
of the statement in a script.

See Also
e TDAStatement Class

e TDAStatement Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.2.2.1 EndLine Property

Used to determine the number of the last statement line in a script.

Class

TDAStatement

Syntax
property EndLine: integer;

Remarks

Use the EndLine property to determine the number of the last statement line in a script.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.2.2.2 EndOffset Property

Used to get the offset in the last line of the statement.

Class
TDAStatement

Syntax
property Endoffset: integer;

Remarks

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

231 SQLite Data Access Components

Use the EndOffset property to get the offset in the last line of the statement.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.2.2.3 EndPos Property

Used to get the end position of the statement in a script.

Class
TDAStatement

Syntax
property EndPos: integer;

Remarks

Use the EndPos property to get the end position of the statement (the position of the last
character in the statement) in a script.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.2.2.4 Omit Property

Used to avoid execution of a statement.

Class

TDAStatement

Syntax
property Oomit: boolean;

Remarks

Set the Omit property to True to avoid execution of a statement.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 232

5.7.1.2.2.5 Params Property

Contains parasmeters for an SQL statement.

Class
TDAStatement

Syntax

property Params: TDAParams;

Remarks

Contains parameters for an SQL statement.

Access Params at runtime to view and set parameter names, values, and data types
dynamically. Params is a zero-based array of parameter records. Index specifies the array

element to access.

See Also
e TDAParam

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.2.2.6 Script Property

Used to determine the TDAScript object the SQL Statement belongs to.

Class

TDAStatement

Syntax
property Script: TDAScript;

Remarks
Use the Script property to determine the TDAScript object the SQL Statement belongs to.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

233 SQLite Data Access Components

5.7.1.2.2.7 SQL Property

Used to get or set the text of an SQL statement.

Class
TDAStatement

Syntax
property SQL: string;

Remarks
Use the SQL property to get or set the text of an SQL statement.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.2.2.8 StartLine Property

Used to determine the number of the first statement line in a script.

Class

TDAStatement

Syntax
property StartLine: integer;

Remarks
Use the StartLine property to determine the number of the first statement line in a script.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.2.2.9 StartOffset Property

Used to get the offset in the first line of a statement.

Class

TDAStatement

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 234

Syntax
property Startoffset: integer;

Remarks

Use the StartOffset property to get the offset in the first line of a statement.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.2.2.10 StartPos Property

Used to get the start position of the statement in a script.

Class

TDAStatement

Syntax
property StartPos: integer;

Remarks

Use the StartPos property to get the start position of the statement (the position of the first
statement character) in a script.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.2.3 Methods

Methods of the TDAStatement class.

For a complete list of the TDAStatement class members, see the TDAStatement Members

topic.

Public

Name Description

Execute Executes a statement.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

235

SQLite Data Access Components

5.7.1.2.3.1

5.7.1.3

See Also
e TDAStatement Class

e TDAStatement Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Execute Method

Executes a statement.

Class
TDAStatement

Syntax

procedure Execute;

Remarks
Use the Execute method to execute a statement.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TDAStatements Class

Holds a collection of TDAStatement objects.

For a list of all members of this type, see TDAStatements members.

Unit
DAScript

Syntax
TDAStatements = class(TCollection);

Remarks

Each TDAStatements holds a collection of TDAStatement objects. TDAStatements maintains

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 236

an index of the statements in its ltems array. The Count property contains the number of
statements in the collection. Use TDAStatements class to manipulate script SQL statements.

See Also
e TDAScript

e TDAStatement

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.3.1 Members

TDAStatements class overview.

Properties

Name Description

tems Used to access separate
script statements.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.3.2 Properties

Properties of the TDAStatements class.

For a complete list of the TDAStatements class members, see the TDAStatements

Members topic.

Public

Name Description

ltems Used to access separate
script statements.

See Also

e TDAStatements Class

e TDAStatements Class Members

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

237

SQLite Data Access Components

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.3.2.1 ltems Property(Indexer)

5.7.2

Used to access separate script statements.

Class
TDAStatements

Syntax
property Items[Index: Integer]: TDAStatement; default;

Parameters
Index

Holds the index value.
Remarks

Use the ltems property to access individual script statements. The value of the Index
parameter corresponds to the Index property of TDAStatement.

See Also
e TDAStatement

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Types

Types in the DAScript unit.

Types
Name Description
This type is used for the
TAfterStatementExecuteEvent TDAScript AfterExecute
event.
This type is used for the
TBeforeStatementExecuteEvent TDAScript BeforeExecute
event.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 238

TONErrorEvent This type is used for the
TDAScript.OnError event.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.2.1 TAfterStatementExecuteEvent Procedure Reference

This type is used for the TDAScript.AfterExecute event.

Unit
DAScript

Syntax

TAfterStatementExecuteEvent = procedure (Sender: TObject; SQL:
string) of object;

Parameters

Sender

An object that raised the event.
SQL

Holds the passed SQL statement.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.2.2 TBeforeStatementExecuteEvent Procedure Reference

This type is used for the TDAScript.BeforeExecute event.

Unit
DAScript

Syntax

TBeforeStatementExecuteEvent = procedure (Sender: TObject; var
SQL: string; var omit: boolean) of object;

Parameters

Sender
An object that raised the event.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

239

SQLite Data Access Components

5.7.2.3

5.7.3

SQL
Holds the passed SQL statement.
Omit
True, if the statement execution should be skipped.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TOnErrorEvent Procedure Reference

This type is used for the TDAScript.OnError event.

Unit
DAScript

Syntax

TOnErroreEvent = procedure (Sender: TObject; E: Exception; SQL:
string; var Action: TErrorAction) of object;

Parameters

Sender
An object that raised the event.
E
The error code.
SQL
Holds the passed SQL statement.
Action

The action to take when the OnError handler exits.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Enumerations

Enumerations in the DAScript unit.

Enumerations
Name Description
TErrorAction Indicates the action to take

when the OnError handler

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 240

exits.
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.3.1 TErrorAction Enumeration
Indicates the action to take when the OnError handler exits.

Unit
DAScript

Syntax

TErrorAction = (eaAbort, eaFail, eaException, eaContinue);

Values

Value Meaning

eaAbort Abort execution without displaying an error message.
eaContinue Continue execution.

In Delphi 6 and higher exception is handled by the

eaException Application.HandleException method.

eaFail Abort execution and display an error message.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8 DASQLMonitor

This unit contains the base class for the TLiteSQLMonitor component.

Classes

Name Description

A base class that introduces

. properties and methods to
TCustomDASQLMonitor monitor dynamic SQL

execution in database
applications interactively.

TDBMonitorOptions This class holds options for

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

241

SQLite Data Access Components

5.8.1

Types

Name
TDATraceFlags

TMonitorOptions

TONSQLEvent

Enumerations

Name

TDATraceFlag

TMonitorOption

© 1997-2024

Devart. All Rights Request Support DAC Forum
Reserved.

Classes

Classes in the DASQLMonitor unit.

Classes

Name

TCustomDASQLMonitor

TDBMonitorOptions

dbMonitor.

Description
Represents the set of
TDATraceFlag.
Represents the set of
TMonitorOption.

This type is used for the

TCustomDASQLMonitor.On
SQL event.

Description

Use TraceFlags to specify

which database operations
the monitor should track in

an application at runtime.

Used to define where
information from
SQLMonitor will be
dispalyed.

Provide Feedback

Description

A base class that introduces
properties and methods to
monitor dynamic SQL
execution in database
applications interactively.
This class holds options for
dbMonitor.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 242

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1 TCustomDASQLMonitor Class

A base class that introduces properties and methods to monitor dynamic SQL execution in
database applications interactively.

For a list of all members of this type, see TCustomDASQLMonitor members.

Unit
DASQLMon1itor

Syntax

TCustombASQLMonitor = class(TComponent);

Remarks

TCustomDASQLMonitor is a base class that introduces properties and methods to monitor
dynamic SQL execution in database applications interactively. TCustomDASQLMonitor
provides two ways of displaying debug information. It monitors either by dialog window or by
Borland's proprietary SQL Monitor. Furthermore to receive debug information use the
TCustomDASQLMonitor.OnSQL event.

In applications use descendants of TCustomDASQLMonitor.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.1 Members

TCustomDASQLMonitor class overview.

Properties

Name Description

Active Used to activate monitoring
of SQL.

DBMonitorOptions Used to set options for
dbMonitor.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

243 SQLite Data Access Components

Used to include the desired

Options properties for
TCustomDASQLMonitor.
Used to specify which

TraceFlags database operations the

monitor should track in an
application at runtime.

Events
Name Description
Occurs when tracing of SQL
OnSQL activity on database
components is needed.
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.2 Properties

Properties of the TCustomDASQLMonitor class.

For a complete list of the TCustomDASQLMonitor class members, see the
TCustomDASQLMonitor Members topic.

Public

Name Description

Active Used to activate monitoring

- of SQL.

DBMonitorOptions Used to set options for
dbMonitor.

. Used to include the desired

Options properties for
TCustomDASQLMonitor.
Used to specify which

TraceFlags database operations the

- monitor should track in an
application at runtime.

See Also

e TCustomDASQLMonitor Class

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 244

o TCustomDASQLMonitor Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.2.1 Active Property

Used to activate monitoring of SQL.

Class
TCustomDASQLMon1itor

Syntax
property Active: boolean default True;

Remarks

Set the Active property to True to activate monitoring of SQL.

See Also
e OnSQL

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.2.2 DBMonitorOptions Property

Used to set options for dbMonitor.

Class

TCustomDASQLMon1itor

Syntax

property DBMonitorOptions: TDBMonitorOptions;

Remarks
Use DBMonitorOptions to set options for dbMonitor.

© 1997-2024

Devart. All Rights Request Support ~ DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

245 SQLite Data Access Components

Reserved.

5.8.1.1.2.3 Options Property

Used to include the desired properties for TCustomDASQLMonitor.

Class

TCustomDASQLMon1itor

Syntax

property Options: TMonitorOptions default [moDialog,
moSQLMonitor, moDBMonitor, moCustom];

Remarks
Set Options to include the desired properties for TCustomDASQLMonitor.

See Also
e OnSQL

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.2.4 TraceFlags Property

Used to specify which database operations the monitor should track in an application at
runtime.

Class

TCustomDASQLMon1itor

Syntax

property TraceFlags: TDATraceFlags default [tfQPrepare,
tfQExecute, tfError, tfConnect, tfTransact, tfParams, tfMisc];

Remarks

Use the TraceFlags property to specify which database operations the monitor should track in
an application at runtime.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 246

See Also
e OnSQL

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.3 Events

Events of the TCustomDASQLMonitor class.

For a complete list of the TCustomDASQLMonitor class members, see the
TCustomDASQLMonitor Members topic.

Public
Name Description
Occurs when tracing of SQL
OnSQL activity on database
components is needed.
See Also

e TCustomDASQLMonitor Class

o TCustomDASQLMonitor Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.3.1 OnSQL Event

Occurs when tracing of SQL activity on database components is needed.

Class
TCustomDASQLMon1itor

Syntax
property OnSQL: TOnSQLEvent,

Remarks

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

247 SQLite Data Access Components

Write the OnSQL event handler to let an application trace SQL activity on database
components. The Text parameter holds the detected SQL statement. Use the Flag parameter
to make selective processing of SQL in the handler body.

See Also
e TraceFlags
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2 TDBMonitorOptions Class

This class holds options for dbMonitor.

For a list of all members of this type, see TDBMonitorOptions members.

Unit

DASQLMon1itor

Syntax
TDBMonitoroptions = class(TPersistent);

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.1 Members

TDBMonitorOptions class overview.

Properties
Name Description
Used to set the host name or
Host IP address of the computer
- where dbMonitor application
runs.
Port Used to set the port number

for connecting to dbMonitor.
Used to set the minimum
time that should be spent
before reconnecting to

ReconnectTimeout

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 248

dbMonitor is allowed.

Used to set timeout for

SendTimeout sending events to

dbMonitor.
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.2 Properties

Properties of the TDBMonitorOptions class.

For a complete list of the TDBMonitorOptions class members, see the TDBMonitorOptions

Members topic.

Published
Name Description
Used to set the host name or
Host IP address of the computer
- where dbMonitor application
runs.
Port Used to set the port number

ReconnectTimeout

SendTimeout

See Also
e TDBMonitorOptions Class

e TDBMonitorOptions Class Members

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

for connecting to dbMonitor.

Used to set the minimum
time that should be spent
before reconnecting to
dbMonitor is allowed.

Used to set timeout for
sending events to
dbMonitor.

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

249 SQLite Data Access Components

5.8.1.2.2.1 Host Property

Used to set the host name or IP address of the computer where dbMonitor application runs.

Class
TDBMonitoroptions

Syntax
property Host: string;

Remarks

Use the Host property to set the host name or IP address of the computer where dbMonitor
application runs.

dbMonitor supports remote monitoring. You can run dbMonitor on a different computer than
monitored application runs. In this case you need to set the Host property to the
corresponding computer name.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.2.2 Port Property

Used to set the port number for connecting to dbMonitor.

Class

TDBMonitoroptions

Syntax

property Port: integer default DBMonitorpPort;

Remarks

Use the Port property to set the port number for connecting to dbMonitor.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 250

5.8.1.2.2.3 ReconnectTimeout Property

Used to set the minimum time that should be spent before reconnecting to dbMonitor is
allowed.

Class
TDBMonitoroptions

Syntax

property ReconnectTimeout: integer default
DefaultReconnectTimeout;

Remarks

Use the ReconnectTimeout property to set the minimum time (in milliseconds) that should be
spent before allowing reconnecting to dbMonitor. If an error occurs when the component
sends an event to dbMonitor (dbMonitor is not running), next events are ignored and the
component does not restore the connection until ReconnectTimeout is over.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.8.1.2.2.4 SendTimeout Property

Used to set timeout for sending events to dbMonitor.

Class
TDBMonitoroptions

Syntax
property SendTimeout: integer default DefaultSendTimeout;

Remarks

Use the SendTimeout property to set timeout (in milliseconds) for sending events to
dbMonitor. If doMonitor does not respond in the specified timeout, event is ignored.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

251

SQLite Data Access Components

5.8.2

5.8.2.1

5.8.2.2

Types
Types in the DASQLMonitor unit.
Types

Name
TDATraceFlags

TMonitorOptions

TONSQLEvent

© 1997-2024
Devart. All Rights Request Support DAC Forum

Reserved.

TDATraceFlags Set

Represents the set of TDATraceFlag.

Unit

DASQLMon1itor

Syntax
TDATraceFlags = set of TDATraceFlag;

© 1997-2024
Devart. All Rights Request Support DAC Forum
Reserved.

TMonitorOptions Set

Represents the set of TMonitorOption.

Unit

DASQLMon1itor

Syntax

TMonitorOptions = set of TMonitoroOption;

Description

Represents the set of
TDATraceFlag.

Represents the set of
TMonitorOption.

This type is used for the
TCustomDASQLMonitor.On
SQL event.

Provide Feedback

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 252

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.2.3 TONnSQLEvent Procedure Reference

This type is used for the TCustomDASQLMonitor.OnSQL event.

Unit
DASQLMon1itor

Syntax

TOnSQLEvent = procedure (Sender: TObject; Text: string; Flag:
TDATraceFlag) of object;

Parameters

Sender
An object that raised the event.
Text
Holds the detected SQL statement.
Flag
Use the Flag parameter to make selective processing of SQL in the handler body.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.3 Enumerations

Enumerations in the DASQLMonitor unit.

Enumerations

Name Description
Use TraceFlags to specify

TDATraceFlag which database operations
the monitor should track in
an application at runtime.
Used to define where

TMonitorOption information from
SQLMonitor will be
dispalyed.

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

253

SQLite Data Access Components

5.8.3.1

Devart. All Rights

Reserved.

TDATraceFlag Enumeration

Use TraceFlags to specify which database operations the monitor should track in an

application at runtime.

Unit

DASQLMon1itor

Syntax

TDATraceFlag = (tfQPrepare, tfQeExecute, tfQFetch, tfError, tfstmt,
tfConnect, tfTransact, tfBlob, tfService, tfMisc, tfParams,
tfobjbDestroy, tfpPool);

Values

Value
tfBlob
tfConnect
tfError
tfMisc
tfObjDestroy
tfParams
tfPool
tfQExecute
tfQFetch
tfQPrepare
tfService
tfStmt
tfTransact

© 1997-2024

Devart. All Rights

Reserved.

Meaning

This option is declared for future use.
Establishing a connection.

Errors of query execution.

This option is declared for future use.
Destroying of components.
Representing parameter values for tfQPrepare and tfQExecute.
Connection pool operations.
Execution of the queries.

This option is declared for future use.
Queries preparation.

This option is declared for future use.
This option is declared for future use.
Processing transactions.

Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 254

5.8.3.2 TMonitorOption Enumeration

Used to define where information from SQLMonitor will be dispalyed.

Unit

DASQLMon1tor

Syntax

TMonitorOption = (moDialog, moSQLMonitor, moDBMonitor, moCustom,

moHandled) ;

Values

Value Meaning
Monitoring of SQL for individual components is allowed. Set

moCustom Debug properties in SQL-related components to True to let
TCustomDASQLMonitor instance to monitor their behavior. Has
effect when moDialog is included.

moDBMonitor Debug information is displayed in DBMonitor.

moDialog Debug information is displayed in debug window.

moHandled Component handle is included into the event description string.

moSQLMonitor Debug information is displayed in Borland SQL Monitor.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9 DBAccess

This unit contains base classes for most of the components.

Classes
Name Description

A base class for exceptions
EDAError

that are raised when an error
occurs on the server side.
Provides an interface
TCRDataSource between a DAC dataset
components and data-aware
controls on a form.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

255

SQLite Data Access Components

TCustomConnectDialog

TCustomDAConnection

TCustomDADataSet

TCustomDASQL

TCustomDAUpdateSQL

TDACondition

TDAConditions

TDAConnectionOptions

TDAConnectionSSLOptions

TDADataSetOptions

TDAEncryption

TDAMapRule

TDAMapRules

TDAMetaData

A base class for the connect
dialog components.

A base class for
components used to
establish connections.
Encapsulates general set of
properties, events, and
methods for working with
data accessed through
various database engines.
A base class for
components executing SQL
statements that do not return
result sets.

A base class for
components that provide
DML statements for more
flexible control over data
modifications.

Represents a condition from
the TDAConditions list.
Holds a collection of
TDACondition objects.

This class allows setting up
the behaviour of the
TDAConnection class.

This class is used to set up
the SSL options.

This class allows setting up
the behaviour of the
TDADataSet class.

Used to specify the options
of the data encryptionina
dataset.

Class that formes rules for
Data Type Mapping.

Used for adding rules for
DataSet fields mapping with
both identifying by field
name and by field type and
Delphi field types.

A class for retrieving
metainformation of the
specified database objects

© 2024 Enter your company name

Reference 256

TDAParam

TDAParams

TDATransaction

TMacro

TMacros

TPoolingOptions

TSmartFetchOptions

Types

Name

TAfterExecuteEvent

TAfterFetchEvent

TBeforeFetchEvent

TConnectionLostEvent

TDAConnectionErrorEvent

in the form of dataset.

A class that forms objects to
represent the values of the
parameters set.

This class is used to
manage a list of TDAParam
objects for an object that
uses field parameters.

A base class that
implements functionality for
controlling transactions.
Obiject that represents the
value of a macro.

Controls a list of TMacro
objects for the
TCustomDASQL.Macros or
TCustomDADataSet
components.

This class allows setting up
the behaviour of the
connection pool.

Smart fetch options are
used to set up the behavior
of the SmartFetch mode.

Description

This type is used for the
TCustomDADataSet.AfterE
xecute and
TCustomDASQL.AfterExecu
te events.

This type is used for the
TCustomDADataSet.AfterF
etch event.

This type is used for the
TCustomDADataSet.Before
Fetch event.

This type is used for the
TCustomDAConnection.On
ConnectionLost event.

This type is used for the
TCustomDAConnection.On

© 2024 Enter your company name

257

SQLite Data Access Components

TDATransactionErrorEvent

TRefreshOptions

TUpdateExecuteEvent

Enumerations

Name
TLabelSet

TLockMode

TRefreshOption

TRetryMode

Variables

Name

BaseSQLOIdBehavior

ChangeCursor

SQLGeneratorCompatibility

Error event.

This type is used for the
TDATransaction.OnError
event.

Represents the set of
TRefreshOption.

This type is used for the
TCustomDADataSet. AfterU
pdateExecute and
TCustomDADataSet.Before
UpdateExecute events.

Description

Sets the languauge of labels
in the connect dialog.

Specifies the lock mode.

Indicates when the editing
record will be refreshed.

Specifies the application
behavior when connectionis
lost.

Description

After assigning SQL text and
modifying it by AddWhere,
DeleteWhere, and
SetOrderBy, all subsequent
changes of the SQL property
will not be reflected in the
BaseSQL property.

When set to True allows
data access components to
change screen cursor for the
execution time.

The value of the
TCustomDADataSet.BaseS
QL property is used to
complete the refresh SQL

© 2024 Enter your company name

Reference 258

5.9.1

© 1997-2024

Devart. All Rights Request Support

DAC Forum

Reserved.

Classes

Classes in the DBAccess unit.

Classes

Name

EDAError

TCRDataSource

TCustomConnectDialog

TCustomDAConnection

TCustomDADataSet

TCustomDASQL

TCustomDAUpdateSQL

TDACondition

statement, if the manually
assigned
TCustomDAUpdateSQL .Ref
reshSQL property contains
only WHERE clause.

Provide Feedback

Description

A base class for exceptions
that are raised when an error
occurs on the server side.
Provides an interface
between a DAC dataset
components and data-aware
controls on a form.

A base class for the connect
dialog components.

A base class for
components used to
establish connections.
Encapsulates general set of
properties, events, and
methods for working with
data accessed through
various database engines.
A base class for
components executing SQL
statements that do not return
result sets.

A base class for
components that provide
DML statements for more
flexible control over data
modifications.

Represents a condition from
the TDAConditions list.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

259

SQLite Data Access Components

TDAConditions

TDAConnectionOptions

TDAConnectionSSLOptions

TDADataSetOptions

TDAEncryption

TDAMapRule

TDAMapRules

TDAMetaData

TDAParam

TDAParams

TDATransaction

TMacro

TMacros

TPoolingOptions

Holds a collection of
TDACondition objects.
This class allows setting up
the behaviour of the
TDAConnection class.

This class is used to set up
the SSL options.

This class allows setting up
the behaviour of the
TDADataSet class.

Used to specify the options
of the data encryptionina
dataset.

Class that formes rules for
Data Type Mapping.

Used for adding rules for
DataSet fields mapping with
both identifying by field
name and by field type and
Delphi field types.

A class for retrieving
metainformation of the
specified database objects
in the form of dataset.

A class that forms objects to
represent the values of the
parameters set.

This class is used to
manage a list of TDAParam
objects for an object that
uses field parameters.

A base class that
implements functionality for
controlling transactions.
Object that represents the
value of a macro.

Controls a list of TMacro
objects for the
TCustomDASQL.Macros or
TCustomDADataSet
components.

This class allows setting up
the behaviour of the
connection pool.

© 2024 Enter your company name

Reference 260

Smart fetch options are

TSmartFetchOptions used to set up the behavior
of the SmartFetch mode.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.1 EDAError Class

A base class for exceptions that are raised when an error occurs on the server side.

For a list of all members of this type, see EDAError members.

Unit

DBAcCcess

Syntax

EDAError = class (EDatabaseError);

Remarks

EDAETrror is a base class for exceptions that are raised when an error occurs on the server
side.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.1.1 Members

EDAError class overview.

Properties

Name Description

Component Contains the component that
caused the error.

ErrorCode Determines the error code
returned by the server.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

261

SQLite Data Access Components

5.9.1.1.2 Properties

5.9.1.1.21

Properties of the EDAETrror class.

For a complete list of the EDAError class members, see the EDAError Members topic.

Public

Name Description

Component Contains the component that
caused the error.

ErrorCode Determines the error code
returned by the server.

See Also

e EDAError Class

e EDAError Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Component Property

Contains the component that caused the error.

Class

EDAError

Syntax
property Component: TObject;

Remarks

The Component property contains the component that caused the error.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 262

5.9.1.1.2.2 ErrorCode Property

Determines the error code returned by the server.

Class
EDAError

Syntax

property ErrorCode: integer;

Remarks

Use the ErrorCode property to determine the error code returned by SQLite. This value is
always positive.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.2 TCRDataSource Class

Provides an interface between a DAC dataset components and data-aware controls on a
form.

For a list of all members of this type, see TCRDataSource members.

Unit

DBAcCcessS

Syntax
TCRDataSource = class(TDataSource);

Remarks

TCRDataSource provides an interface between a DAC dataset components and data-aware
controls on a form.

TCRDataSource inherits its functionality directly from the TDataSource component.

At design time assign individual data-aware components' DataSource properties from their
drop-down listboxes.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

263 SQLite Data Access Components

© 1997-2024
Devart. All Rights Request Support

DAC Forum

Reserved.

5.9.1.2.1 Members

TCRDataSource class overview.

© 1997-2024
Devart. All Rights Request Support

DAC Forum

Reserved.

5.9.1.3 TCustomConnectDialog Class

A base class for the connect dialog components.

Provide Feedback

Provide Feedback

For a list of all members of this type, see TCustomConnectDialog members.

Unit

DBAcCcess

Syntax

TCustomConnectDialog = class (TComponent);

Remarks

TCustomConnectDialog is a base class for the connect dialog components. It provides

functionality to show a dialog box where user can edit username, password and server name

before connecting to a database. You can customize captions of buttons and labels by their

properties.

© 1997-2024
Devart. All Rights Request Support

DAC Forum

Reserved.

5.9.1.3.1 Members

TCustomConnectDialog class overview.

Properties

Name
CancelButton

Provide Feedback

Description

Used to specify the label for
the Cancel button.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 264

Caption Used to set the caption of
dialog box.
ConnectButton Used to specify the label for

the Connect button.
Used to specify the class of

DialogClass the form that will be

- displayed to enter login
information.

LabelSet Used to set the language of

buttons and labels captions.
Used to indicate the number

Retries of retries of failed
connections.
Used to specify whether the
login information should be
StoreLoginfo kept in system registry after
a connection was
established.
Methods
Name Description
Displays the connect dialog
Execute and calls the connection's
Connect method when user
clicks the Connect button.
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.3.2 Properties

Properties of the TCustomConnectDialog class.

For a complete list of the TCustomConnectDialog class members, see the

TCustomConnectDialog Members topic.

Public
Name Description
CancelButton Used to specify the label for

the Cancel button.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

265 SQLite Data Access Components

Caption Used to set the caption of
dialog box.
ConnectButton Used to specify the label for

the Connect button.
Used to specify the class of

DialogClass the form that will be

- displayed to enter login
information.

LabelSet Used to set the language of

buttons and labels captions.
. Used to indicate the number
Retries of retries of failed
connections.
Used to specify whether the
login information should be

StoreLoglnfo kept in system registry after
a connection was
established.

See Also

e TCustomConnectDialog Class

e TCustomConnectDialog Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.3.2.1 CancelButton Property

Used to specify the label for the Cancel button.

Class

TCustomConnectDialog

Syntax
property CancelButton: string;

Remarks

Use the CancelButton property to specify the label for the Cancel button.

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 266

Devart. All Rights
Reserved.

5.9.1.3.2.2 Caption Property

Used to set the caption of dialog box.

Class

TCustomConnectDialog

Syntax

property Caption: string;

Remarks

Use the Caption property to set the caption of dialog box.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.3.2.3 ConnectButton Property

Used to specify the label for the Connect button.

Class

TCustomConnectDialog

Syntax

property ConnectButton: string;

Remarks

Use the ConnectButton property to specify the label for the Connect button.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

267

SQLite Data Access Components

5.9.1.3.24

5.9.1.3.25

DialogClass Property

Used to specify the class of the form that will be displayed to enter login information.

Class

TCustomConnectDialog

Syntax
property DialogClass: string;

Remarks

Use the DialogClass property to specify the class of the form that will be displayed to enter
login information. When this property is blank, TCustomConnectDialog uses the default form -
TConnectForm. You can write your own login form to enter login information and assign its
class name to the DialogClass property. Each login form must have ConnectDialog:
TCustomConnectDialog published property to access connection information. For details see
the implementation of the connect form which sources are in the Lib subdirectory of the
LiteDAC installation directory.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

LabelSet Property

Used to set the language of buttons and labels captions.

Class

TCustomConnectDialog

Syntax
property Labelset: TLabelSet default 1stEnglish;

Remarks

Use the LabelSet property to set the language of labels and buttons captions.
The default value is IsEnglish.

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 268

Devart. All Rights
Reserved.

5.9.1.3.2.6 Retries Property

Used to indicate the number of retries of failed connections.

Class

TCustomConnectDialog

Syntax
property Retries: word default 3;

Remarks
Use the Retries property to determine the number of retries of failed connections.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.3.2.7 StoreLoginfo Property

Used to specify whether the login information should be kept in system registry after a
connection was established.

Class

TCustomConnectDialog

Syntax
property StoreLogInfo: boolean default True;

Remarks
Use the StoreLoglnfo property to specify whether to keep login information in system registry
after a connection was established using provided username, password and servername.

Set this property to True to store login information.

The default value is True.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

269 SQLite Data Access Components

Reserved.

5.9.1.3.3 Methods

Methods of the TCustomConnectDialog class.

For a complete list of the TCustomConnectDialog class members, see the

TCustomConnectDialog Members topic.

Public
Name Description
Displays the connect dialog
Execute and calls the connection's
Connect method when user
clicks the Connect button.
See Also

e TCustomConnectDialog Class

e TCustomConnectDialog Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.3.3.1 Execute Method

Displays the connect dialog and calls the connection's Connect method when user clicks the
Connect button.

Class

TCustomConnectDialog

Syntax

function Execute: boolean; virtual;

Return Value
True, if connected.

Remarks

Displays the connect dialog and calls the connection's Connect method when user clicks the

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 270

Connect button. Returns True if connected. If user clicks Cancel, Execute returns False.

In the case of failed connection Execute offers to connect repeat Retries times.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.4 TCustomDAConnection Class

A base class for components used to establish connections.

For a list of all members of this type, see TCustomDAConnection members.

Unit

DBAcCcess

Syntax

TCustombAConnection = class (TCustomConnection);

Remarks

TCustomDAConnection is a base class for components that establish connection with
database, provide customised login support, and perform transaction control.

Do not create instances of TCustomDAConnection. To add a component that represents a
connection to a source of data, use descendants of the TCustomDAConnection class.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.4.1 Members

TCustomDAConnection class overview.

Properties

Name Description

Allows to link a
TCustomConnectDialog
component.

ConnectString Used to specify the
connection information, such

ConnectDialog

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

271

SQLite Data Access Components

ConvertEOL

InTransaction

LoginPrompt

Options
Pooling

PoolingOptions

Methods

Name
ApplyUpdates

Commit
Connect
CreateSQL

Disconnect

GetKeyFieldNames

GetTableNames

MonitorMessage

Ping

RemoveFromPool

as: UserName, Password,
Server, efc.

Allows customizing line
breaks in string fields and
parameters.

Indicates whether the
transaction is active.
Specifies whether a login
dialog appears immediately
before opening a new
connection.

Specifies the connection
behavior.

Enables or disables using
connection pool.
Specifies the behaviour of
connection pool.

Description
Overloaded. Applies
changes in datasets.

Commits current transaction.

Establishes a connection to
the server.

Creates a component for
queries execution.

Performs disconnect.

Provides a list of available
key field names.

Provides a list of available
tables names.

Sends a specified message
through the
TCustomDASQLMonitor

component.

Used to check state of
connection to the server.
Marks the connection that
should not be returned to the
pool after disconnect.

© 2024 Enter your company name

Reference 272

Rollback

StartTransaction

Events

Name

OnConnectionLost

OnError

© 1997-2024
Devart. All Rights
Reserved.

5.9.1.4.2 Properties

Request Support

DAC Forum

Properties of the TCustomDAConnection class.

Discards all current data
changes and ends
transaction.

Begins a new user
transaction.

Description

This event occurs when
connection was lost.

This event occurs when an
error has arisenin the
connection.

Provide Feedback

For a complete list of the TCustomDAConnection class members, see the

TCustomDAConnection Members topic.

Public

Name

ConnectDialog

ConnectString

ConvertEOL

InTransaction

LoginPrompt

Description

Allows to link a
TCustomConnectDialog
component.

Used to specify the
connection information, such
as: UserName, Password,
Server, etc.

Allows customizing line
breaks in string fields and
parameters.

Indicates whether the
transaction is active.
Specifies whether a login
dialog appears immediately
before opening a new

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

273 SQLite Data Access Components

connection.
Options Specifies the connection
- behavior.
Pooling Enables or disables using
connection pool.
PoolingOptions Specifies the behaviour of

connection pool.

See Also
e TCustomDAConnection Class

e TCustomDAConnection Class Members

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.4.2.1 ConnectDialog Property

Allows to link a TCustomConnectDialog component.

Class

TCustomDAConnection

Syntax
property ConnectDialog: TCustomConnectDialog;

Remarks

Use the ConnectDialog property to assign to connection a TCustomConnectDialog

component.

See Also
e TCustomConnectDialog

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 274

5.9.1.4.2.2 ConnectString Property

Used to specify the connection information, such as: UserName, Password, Server, etc.

Class

TCustomDAConnection

Syntax

property ConnectString: string stored False;

Remarks

LiteDAC recognizes an ODBC-like syntax in provider string property values. Within the string,
elements are delimited by using a semicolon. Each element consists of a keyword, an equal
sign character, and the value passed on initialization. For example:

Server=Londonl;User ID=nancyd

Connection parameters

The following connection parameters can be used to customize connection:

Parameter Name Description
Specifies whether a login dialog appears
LoginPrompt immediately before opening a new
connection.
Pooling Enables or disables using connection pool.
Used to specify the maximum time during
ConnectionLifeTime which an opened connection can be used

by connection pool.

Used to specify the maximum number of
MaxPoolSize connections that can be opened in

connection pool.

Used to specify the minimum number of
MinPoolSize connections that can be opened in
connection pool.
Used for a connection to be validated when
it is returned from the pool.
Used to set or get the SQLite client library

Validate Connection

ClientLibra location.
Database Used to specify the name of the database

to be used once a connection is open.

© 2024 Enter your company name

275 SQLite Data Access Components

Used to enable or disable Unicode

support.

Used to connect to the database directly

and without using SQL.ite3 client library.

Used to force TLiteConnection to create a

ForceCreateDatabase new database before opening a
connection, if the database is not exists.

UseUnicode

Direct

See Also
e Connect

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.4.2.3 ConvertEOL Property

Allows customizing line breaks in string fields and parameters.

Class

TCustomDAConnection

Syntax
property ConverteEOL: boolean default False;

Remarks

Affects the line break behavior in string fields and parameters. When fetching strings
(including the TEXT fields) with ConvertEOL = True, dataset converts their line breaks from
the LF to CRLF form. And when posting strings to server with ConvertEOL turned on, their
line breaks are converted from CRLF to LF form. By default, strings are not converted.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.4.2.4 InTransaction Property

Indicates whether the transaction is active.

Class

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 276

TCustomDAConnection

Syntax

property InTransaction: boolean;

Remarks

Examine the InTransaction property at runtime to determine whether user transaction is
currently in progress. In other words InTransaction is set to True when user explicitly calls
StartTransaction. Calling Commit or Rollback sets InTransaction to False. The value of the

InTransaction property cannot be changed directly.

See Also
e StartTransaction

e Commit
e Rollback

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.4.2.5 LoginPrompt Property

Specifies whether a login dialog appears immediately before opening a new connection.

Class

TCustomDACoOnnection

Syntax
property LoginPrompt default DefvalLoginPrompt;

Remarks

Specifies whether a login dialog appears immediately before opening a new connection. If
ConnectDialog is not specified, the default connect dialog will be shown. The connect dialog

will appear only if the LiteDacVcl unit appears to the uses clause.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

277 SQLite Data Access Components

5.9.1.4.2.6 Options Property

Specifies the connection behavior.

Class

TCustomDAConnection

Syntax

property Options: TDAConnectionOptions;

Remarks

Set the properties of Options to specify the behaviour of the connection.

Descriptions of all options are in the table below.

Option Name

AllowimplicitConnect

DisconnectedMode

KeepDesignConnected

LocalFailover

See Also
e Disconnected Mode

e Working in an Unstable Network

© 1997-2024

Devart. All Rights Request Support

Description

Specifies whether to allow or not implicit
connection opening.

Used to open a connection only when
needed for performing a server call and
closes after performing the operation.

Used to prevent an application from
establishing a connection at the time of
startup.

If True, the OnConnectionLost event occurs
and a failover operation can be performed
after connection breaks.

DAC Forum Provide Feedback

Reserved.

5.9.1.4.2.7 Pooling Property

Enables or disables using connection pool.

Class

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 278

TCustomDAConnection

Syntax
property Pooling: boolean default DefvalPooling;

Remarks

Normally, when TCustomDAConnection establishes connection with the server it takes
server memory and time resources for allocating new server connection. For example,
pooling can be very useful when using disconnect mode. If an application has wide user
activity that forces many connect/disconnect operations, it may spend a lot of time on
creating connection and sending requests to the server. TCustomDAConnection has
software pool which stores open connections with identical parameters.

Connection pool uses separate thread that validates the pool every 30 seconds. Pool
validation consists of checking each connection in the pool. If a connection is broken due to a
network problem or another reason, it is deleted from the pool. The validation procedure
removes also connections that are not used for a long time even if they are valid from the
pool.

Set Pooling to True to enable pooling. Specify correct values for PoolingOptions. Two
connections belong to the same pool if they have identical values for the parameters:
MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime

Note: Using Pooling := True can cause errors with working with temporary tables.

See Also
¢ PoolingOptions

e Connection Pooling

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.4.2.8 PoolingOptions Property

Specifies the behaviour of connection pool.

Class

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

279 SQLite Data Access Components

TCustomDAConnection

Syntax

property PoolingOptions: TPoolingOptions;

Remarks

Set the properties of PoolingOptions to specify the behaviour of connection pool.

Descriptions of all options are in the table below.

Option Name

ConnectionLifetime

MaxPoolSize

MinPoolSize

Poolld
Validate

See Also
¢ Pooling

© 1997-2024
Devart. All Rights Request Support

Description

Used to specify the maximum time during
which an open connection can be used by
connection pool.

Used to specify the maximum number of
connections that can be opened in
connection pool.

Used to specify the minimum number of
connections that can be opened in the
connection pool.

Used to specify an ID for a connection pool.

Used for a connection to be validated when
itis returned from the pool.

DAC Forum Provide Feedback

Reserved.

5.9.1.4.3 Methods

Methods of the TCustomDAConnection class.

For a complete list of the TCustomDAConnection class members, see the

TCustomDAConnection Members topic.

Public

Name

Description

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

280

Reference

5.9.1.4.31

ApplyUpdates

Commit
Connect
CreateSQL

Disconnect

GetKeyFieldNames

GetTableNames

MonitorMessage

Ping

RemoveFromPool

Rollback

StartTransaction

See Also
e TCustomDAConnection Class

e TCustomDAConnection Class Members

© 1997-2024

Devart. All Rights DAC Forum

Request Support

Reserved.

ApplyUpdates Method

Applies changes in datasets.

Class

TCustomDAConnection

Overloaded. Applies
changes in datasets.

Commits current transaction.

Establishes a connection to
the server.

Creates a component for
queries execution.

Performs disconnect.

Provides a list of available
key field names.

Provides a list of available
tables names.

Sends a specified message
through the
TCustomDASQLMonitor
component.

Used to check state of
connection to the server.
Marks the connection that
should not be returned to the
pool after disconnect.
Discards all current data
changes and ends
transaction.

Begins a new user
transaction.

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

281

SQLite Data Access Components

Overload List

Name

ApplyUpdates

ApplyUpdates(const DataSets: array of
TCustomDADataSet)

© 1997-2024
Devart. All Rights

Request Support

Description
Applies changes from all active datasets.

Applies changes from the specified
datasets.

DAC Forum Provide Feedback

Reserved.

Applies changes from all active datasets.

Class

TCustomDAConnection

Syntax

procedure ApplyuUpdates; overload; virtual;

Remarks

Call the ApplyUpdates method to write all pending cached updates from all active datasets

attached to this connection to a database or from specific datasets. The ApplyUpdates

method passes cached data to the database for storage, takes care of committing or rolling

back transactions, and clearing the cache when the operation is successful.

Using ApplyUpdates for connection is a preferred method of updating datasets rather than

calling each individual dataset's ApplyUpdates method.

See Also
e TMemDataSet.CachedUpdates

e TMemDataSet.ApplyUpdates

© 1997-2024

Devart. All Rights Request Support

DAC Forum Provide Feedback

Reserved.

Applies changes from the specified datasets.

Class

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 282

TCustomDAConnection

Syntax

procedure Applyupdates(const DataSets: array of
TCustomDADataSet); overload; virtual;

Parameters

DataSets
A list of datasets changes in which are to be applied.

Remarks

Call the ApplyUpdates method to write all pending cached updates from the specified
datasets. The ApplyUpdates method passes cached data to the database for storage, takes
care of committing or rolling back transactions and clearing the cache when operation is
successful.

Using ApplyUpdates for connection is a preferred method of updating datasets rather than
calling each individual dataset's ApplyUpdates method.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.4.3.2 Commit Method

Commits current transaction.

Class

TCustomDAConnection

Syntax

procedure Commit; virtual;

Remarks

Call the Commit method to commit current transaction. On commit server writes
permanently all pending data updates associated with the current transaction to the database
and then ends the transaction. The current transaction is the last transaction started by
calling StartTransaction.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

283

SQLite Data Access Components

5.9.14.3.3

See Also
e Rollback

e StartTransaction

e TLiteQuery.FetchAll

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Connect Method

Establishes a connection to the server.

Class

TCustomDAConnection

Syntax

procedure Connect; overload;procedure Connect(const
ConnectString: string); overload;

Remarks

Call the Connect method to establish a connection to the server. Connect sets the Connected
property to True. If LoginPrompt is True, Connect prompts user for login information as
required by the server, or otherwise tries to establish a connection using values provided in
the P:Devart.Dac.TCustomDAConnection.Username,
P:Devart.Dac.TCustomDAConnection.Password, and
P:Devart.Dac.TCustomDAConnection.Server properties.

See Also
e Disconnect

e ConnectDialog

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 284

5.9.1.4.3.4 CreateSQL Method

Creates a component for queries execution.

Class

TCustomDAConnection

Syntax

function CreateSQL: TCustomDASQL; virtual;

Return Value
A new instance of the class.

Remarks

Call the CreateSQL to return a new instance of the TCustomDASQL class and associates it

with this connection object. In the descendant classes this method should be overridden to
create an appropriate descendant of the TCustomDASQL component.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.4.3.5 Disconnect Method

Performs disconnect.

Class

TCustomDACoOnnection

Syntax

procedure Disconnect;

Remarks

Call the Disconnect method to drop a connection to database. Before the connection
component is deactivated, all associated datasets are closed. Calling Disconnect is similar to
setting the Connected property to False.

In most cases, closing a connection frees system resources allocated to the connection.

If user transaction is active, e.g. the InTransaction flag is set, calling to Disconnect the current

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

285

SQLite Data Access Components

5.9.1.4.3.6

user transaction.

Note: If a previously active connection is closed and then reopened, any associated datasets
must be individually reopened; reopening the connection does not automatically reopen
associated datasets.

See Also
e Connect

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

GetKeyFieldNames Method

Provides a list of available key field names.

Class

TCustomDAConnection

Syntax

procedure GetKeyFieldNames(const TableName: string; List:
TStrings); virtual;

Parameters

TableName
Holds the table name

List
The list of available key field names
Return Value

Key field name

Remarks

Call the GetKeyFieldNames method to get the names of available key fields. Populates a
string list with the names of key fields in tables.

See Also
e GetTableNames

© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 286

Devart. All Rights
Reserved.

5.9.1.4.3.7 GetTableNames Method

Provides a list of available tables names.

Class

TCustomDAConnection

Syntax

procedure GetTableNames(List: TStrings; AllTables: boolean =
False; onlyTables: boolean = False); virtual;

Parameters
List
A TStrings descendant that will be filled with table names.

AllTables

True, if procedure returns all table names including the names of system tables to the List
parameter.

OnlyTables

Remarks

Call the GetTableNames method to get the names of available tables. Populates a string list
with the names of tables in the database. If AllTables = True, procedure returns all table
names including the names of system tables to the List parameter, otherwise List will not
contain the names of system tables. If AllTables = True, the procedure returns to the List
parameter the names of the tables that belong to all schemas; otherwise, List will contain the
names of the tables that belong to the current schema.

Note: Any contents already in the target string list object are eliminated and overwritten by the

data produced by GetTableNames.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

287

SQLite Data Access Components

5.9.14.3.8

5.9.1.4.3.9

MonitorMessage Method

Sends a specified message through the TCustomDASQLMonitor component.

Class

TCustomDAConnection

Syntax

procedure MonitorMessage(const Msg: string);

Parameters

Msg
Message text that will be sent.

Remarks

Call the MonitorMessage method to output specified message via the

TCustomDASQLMonitor component.

See Also
e TCustomDASQLMonitor

© 1997-2024
Devart. All Rights Request Support DAC Forum

Reserved.

Ping Method

Used to check state of connection to the server.

Class

TCustomDACoOnnection

Syntax
procedure Ping;

Remarks

The method is used for checking server connection state.

©1997-2024 Request Support DAC Forum

Devart. All Rights

Provide Feedback

Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 288

Reserved.

5.9.1.4.3.10 RemoveFromPool Method

Marks the connection that should not be returned to the pool after disconnect.

Class

TCustomDAConnection

Syntax

procedure RemoveFromPool;

Remarks

Call the RemoveFromPool method to mark the connection that should be deleted after
disconnect instead of returning to the connection pool.

See Also
¢ Pooling

e PoolingOptions

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.4.3.11 Rollback Method

Discards all current data changes and ends transaction.

Class

TCustomDACoOnnection

Syntax
procedure Rollback; virtual;

Remarks

Call the Rollback method to discard all updates, insertions, and deletions of data associated
with the current transaction to the database server and then end the transaction. The current
transaction is the last transaction started by calling StartTransaction.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

289 SQLite Data Access Components

See Also
e Commit

e StartTransaction

e TLiteQuery.FetchAll

e TLiteTable.FetchAll

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.4.3.12 StartTransaction Method

Begins a new user transaction.

Class

TCustomDAConnection

Syntax

procedure StartTransaction; virtual;

Remarks

Call the StartTransaction method to begin a new user transaction against the database
server. Before calling StartTransaction, an application should check the status of the
InTransaction property. If InTransaction is True, indicating that a transaction is already in
progress, a subsequent call to StartTransaction without first calling Commit or Rollback to

end the current transaction raises EDatabaseError. Calling StartTransaction when
connection is closed also raises EDatabaseError.

Updates, insertions, and deletions that take place after a call to StartTransaction are held by
the server until an application calls Commit to save the changes, or Rollback to cancel them.

See Also
e Commit

e Rollback

¢ [nTransaction

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 290

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.4.4 Events

Events of the TCustomDAConnection class.

For a complete list of the TCustomDAConnection class members, see the

TCustomDAConnection Members topic.

Public

Name Description

OnConnectionLost This event occurs when
connection was lost.
This event occurs when an

OnError error has arisen in the
connection.

See Also

e TCustomDAConnection Class

e TCustomDAConnection Class Members

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.4.4.1 OnConnectionLost Event

This event occurs when connection was lost.

Class

TCustomDAConnection

Syntax

property oOnConnectionLost: TConnectionLostEvent;

Remarks

Write the OnConnectionLost event handler to process fatal errors and perform failover.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

291

SQLite Data Access Components

5.9.1.44.2

5.9.1.5

Note: To use the OnConnectionLost event handler, you should explicitly add the MemData

unit to the 'uses’ list and set the TCustomDAConnection.Options.LocalFailover property to
True.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

OnkError Event

This event occurs when an error has arisen in the connection.

Class

TCustomDAConnection

Syntax

property OnError: TDAConnectionErrorEgvent;

Remarks

Write the OnError event handler to respond to errors that arise with connection. Check the E
parameter to get the error code. Set the Fail parameter to False to prevent an error dialog
from being displayed and to raise the EAbort exception to cancel current operation. The
default value of Fail is True.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TCustomDADataSet Class

Encapsulates general set of properties, events, and methods for working with data accessed
through various database engines.

For a list of all members of this type, see TCustomDADataSet members.

Unit

DBAccess

Syntax
TCustomDADatasSet = class(TMemDataset);

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 292

Remarks

TCustomDADataSet encapsulates general set of properties, events, and methods for working
with data accessed through various database engines. All database-specific features are
supported by descendants of TCustomDADataSet.

Applications should not use TCustomDADataSet objects directly.

Inheritance Hierarchy

TMemDataSet
TCustomDADataSet
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.1 Members

TCustomDADataSet class overview.

Properties
Name Description

Used to return SQL text
BaseSQL without any changes

performed by AddWhere,
SetOrderBy, and FilterSQL.
Used to enable or disable
the use of cached updates
for a dataset.

CachedUpdates (inherited from TMemDataSet)

Conditions Used to add WHERE
conditions to a query
Used to specify a

Connection pecify

connection object to use to
connect to a data store.
DataTypeMap Used to set data type
mapping rules
Used to display the
Debug statement that is being
executed and the values and
types of its parameters.

DetailFields Used to specify the fields
- that correspond to the

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

293

SQLite Data Access Components

Disconnected

FetchRows

FilterSQL

FinalSQL

IndexFieldNames (inherited from TMemDataSet)

IsQue

KeyEXxclusive (inherited from TMemDataSet)

KeyFields

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

MacroCount

foreign key fields from
MasterFields when building
master/detail relationship.
Used to keep dataset
opened after connectionis
closed.

Used to define the number
of rows to be transferred
across the network at the
same time.

Used to change the WHERE
clause of SELECT
statement and reopen a
query.

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

Used to get or set the list of
fields on which the recordset
is sorted.

Used to check whether SQL
statement returns rows.
Specifies the upper and
lower boundaries for a
range.

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.
Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.
Used to prevent implicit
update of rows on database
server.

Used to get the number of
macros associated with the
Macros property.

© 2024 Enter your company name

Reference 294

Macros

MasterFields

MasterSource

Options

ParamCheck

ParamCount

Params

Prepared (inherited from TMemDataSet)

Ranged (inherited from TMemDataSet)

ReadOnly

RefreshOptions

RowsAffected

SQL

Makes it possible to change
SQL queries easily.

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.
Used to specify the data
source component which
binds current dataset to the
master one.

Used to specify the
behaviour of
TCustomDADataSet object.
Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.
Used to indicate how many
parameters are there in the
Params property.

Used to view and set
parameter names, values,
and data types dynamically.
Determines whether a query
is prepared for execution or
not.

Indicates whether a range is
applied to a dataset.

Used to prevent users from
updating, inserting, or
deleting data in the dataset.
Used to indicate when the
editing record is refreshed.
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

Used to provide a SQL
statement that a query
component executes when

© 2024 Enter your company name

295 SQLite Data Access Components

its Open method is called.

Used to specify a SQL
SQLDelete statement that will be used
- when applying a deletion to

a record.

Used to specify the SQL
SQLInsert statement that will be used
- when applying an insertion

to a dataset.

Used to specify a SQL
SQLLock statement that will be used

to perform a record lock.

Used to specify the SQL
SQLRecCount statement that is used to get

the record count when
opening a dataset.
Used to specify a SQL
statement that will be used
SQLRefresh to refresh current record by
- calling the
TCustomDADataSet.Refres
hRecord procedure.
Used to specify a SQL
SQLUpdate statement that will be used
- when applying an update to
a dataset.
Used if an application does
UniDirectional not need bidirectional
access to records in the
result set.
Used to indicate the update
UpdateRecordTypes (inherited from TMemDataSet) status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description
Adds condition to the
AddWhere WHERE clause of SELECT
statement in the SQL
property.

© 2024 Enter your company name

Reference 296

ApplyRange (inherited from TMemDataSet)

ApplyUpdates (inherited from TMemDataSet)

BreakExec

CancelRange (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)

CreateBlobStream

DeferredPost (inherited from TMemDataSet)

DeleteWhere

EditRangeEnd (inherited from TMemDataSet)

EditRangeStart (inherited from TMemDataSet)

Execute

Executing

Fetched

Fetching

Applies a range to the
dataset.

Overloaded. Writes
dataset's pending cached
updates to a database.
Breaks execution of the SQL
statement on the server.
Removes any ranges
currently in effect for a
dataset.

Clears all pending cached
updates from cache and
restores dataset in its prior
state.

Clears the cached updates
buffer.

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

Makes permanent changes
to the database server.
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

Enables changing the
ending value for an existing
range.

Enables changing the
starting value for an existing
range.

Overloaded. Executes a
SQL statement on the
server.

Indicates whether SQL
statement is still being
executed.

Used to find out whether
TCustomDADataSet has
fetched all rows.

Used to learn whether
TCustomDADataSet is still

© 2024 Enter your company name

297

SQLite Data Access Components

FetchingAll

FindKey

FindMacro

FindNearest

FindParam

GetBlob (inherited from TMemDataSet)

GetDataType

GetFieldObject

GetFieldPrecision

GetFieldScale

GetKeyFieldNames

GetOrderBy

GotoCurrent

Locate (inherited from TMemDataSet)

fetching rows.

Used to learn whether
TCustomDADataSet is
fetching all rows to the end.
Searches for a record which
contains specified field
values.

Finds a macro with the
specified name.

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.
Determines if a parameter
with the specified name
exists in a dataset.
Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

Returns internal field types
defined in the MemData and
accompanying modules.
Returns a multireference
shared object from field.
Retrieves the precision of a
number field.

Retrieves the scale of a
number field.

Provides a list of available
key field names.

Retrieves an ORDER BY
clause from a SQL
statement.

Sets the current record in
this dataset similar to the
current record in another
dataset.

Overloaded. Searches a
dataset for a specific record
and positions the cursor on

© 2024 Enter your company name

Reference 298

LocateEx (inherited from TMemDataSet)

Lock

MacroByName

ParamByName

Prepare

RefreshRecord

RestoreSQL

RestoreUpdates (inherited from TMemDataSet)

RevertRecord (inherited from TMemDataSet)

SaveSQL

SaveToXML (inherited from TMemDataSet)

SetOrderBy

SetRange (inherited from TMemDataSet)

SetRangeEnd (inherited from TMemDataSet)

it.

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Locks the current record.

Finds a macro with the
specified name.

Sets or uses parameter
information for a specific
parameter based on its
name.

Allocates, opens, and
parses cursor for a query.
Actualizes field values for
the current record.

Restores the SQL property
modified by AddWhere and
SetOrderBy.

Marks all records in the
cache of updates as
unapplied.

Cancels changes made to
the current record when
cached updates are
enabled.

Saves the SQL property
value to BaseSQL.
Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

Builds an ORDER BY clause
of a SELECT statement.
Sets the starting and ending
values of a range, and
applies it.

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

© 2024 Enter your company name

299

SQLite Data Access Components

SetRangeStart (inherited from TMemDataSet)

SQLSaved

UnLock

UnPrepare (inherited from TMemDataSet)

UpdateResult (inherited from TMemDataSet)

UpdateStatus (inherited from TMemDataSet)

Events

Name

AfterExecute
AfterFetch

AfterUpdateExecute

BeforeFetch

BeforeUpdateExecute

OnUpdateError (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

Determines if the SQL
property value was saved to
the BaseSQL property.

Releases a record lock.

Frees the resources
allocated for a previously
prepared query on the
server and client sides.
Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

Indicates the current update
status for the dataset when
cached updates are
enabled.

Description

Occurs after a component
has executed a query to
database.

Occurs after dataset finishes
fetching data from server.
Occurs after executing
insert, delete, update, lock
and refresh operations.
Occurs before dataset is
going to fetch block of
records from the server.
Occurs before executing
insert, delete, update, lock,
and refresh operations.

Occurs when an exception is
generated while cached
updates are applied to a

© 2024 Enter your company name

Reference 300

OnUpdateRecord (inherited from TMemDataSet)

© 1997-2024
Devart. All Rights Request Support DAC Forum

Reserved.

5.9.1.5.2 Properties

Properties of the TCustomDADataSet class.

database.

Occurs when a single
update component can not
handle the updates.

Provide Feedback

For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet

Members topic.

Public

Name

BaseSQL

CachedUpdates (inherited from TMemDataSet)

Conditions
Connection

DataTypeMap

Debug

DetailFields

Disconnected

Description

Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.
Used to enable or disable
the use of cached updates
for a dataset.

Used to add WHERE
conditions to a query

Used to specify a
connection object to use to
connect to a data store.
Used to set data type
mapping rules

Used to display the
statement that is being
executed and the values and
types of its parameters.
Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Used to keep dataset
opened after connectionis

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

301

SQLite Data Access Components

FetchRows

FilterSQL

FinalSQL

IndexFieldNames (inherited from TMemDataSet)

IsQuery

KeyExclusive (inherited from TMemDataSet)

KeyFields

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

MacroCount

Macros

MasterFields

closed.

Used to define the number
of rows to be transferred
across the network at the
same time.

Used to change the WHERE
clause of SELECT
statement and reopen a
query.

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

Used to get or set the list of
fields on which the recordset
is sorted.

Used to check whether SQL
statement returns rows.
Specifies the upper and
lower boundaries for a
range.

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.
Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.
Used to prevent implicit
update of rows on database
server.

Used to get the number of
macros associated with the
Macros property.

Makes it possible to change
SQL queries easily.

Used to specify the names
of one or more fields that are
used as foreign keys for

© 2024 Enter your company name

Reference 302

MasterSource

Options

ParamCheck

ParamCount

Params

Prepared (inherited from TMemDataSet)

Ranged (inherited from TMemDataSet)

ReadOnly

RefreshOptions

RowsAffected

SQL

SQLDelete

dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.
Used to specify the data
source component which
binds current dataset to the
master one.

Used to specify the
behaviour of
TCustomDADataSet object.
Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.
Used to indicate how many
parameters are there in the
Params property.

Used to view and set
parameter names, values,
and data types dynamically.
Determines whether a query
is prepared for execution or
not.

Indicates whether a range is
applied to a dataset.

Used to prevent users from
updating, inserting, or
deleting data in the dataset.
Used to indicate when the
editing record is refreshed.
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.
Used to provide a SQL
statement that a query
component executes when
its Open method is called.
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

© 2024 Enter your company name

303 SQLite Data Access Components
Used to specify the SQL
SQLInsert statement that will be used
- when applying an insertion
to a dataset.
Used to specify a SQL
SQLLock statement that will be used
to perform a record lock.
Used to specify the SQL
SQLRecCount statement that is used to get
the record count when
opening a dataset.
Used to specify a SQL
statement that will be used
SQLRefresh to refresh current record by
N calling the
TCustomDADataSet.Refres
hRecord procedure.
Used to specify a SQL
SQLUpdate statement that will be used
- when applying an update to
a dataset.
Used if an application does
UniDirectional not need bidirectional
access to records in the
result set.
Used to indicate the update
UpdateRecordTypes (inherited from TMemDataSet) status for the current record
when cached updates are
enabled.
UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.
See Also
e TCustomDADataSet Class
e TCustomDADataSet Class Members
© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.
5.9.1.5.2.1 BaseSQL Property

Used to return SQL text without any changes performed by AddWhere, SetOrderBy, and

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 304

FilterSQL.

Class

TCustomDADataSet

Syntax
property BasesQL: string;

Remarks

Use the BaseSQL property to return SQL text without any changes performed by AddWhere,
SetOrderBy, and FilterSQL, only macros are expanded. SQL text with all these changes can
be returned by FinalSQL.

See Also
e FinalSQL

e AddWhere

e SaveSQL

e SQLSaved
e RestoreSQL

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.5.2.2 Conditions Property

Used to add WHERE conditions to a query

Class

TCustomDADataSet

Syntax
property Conditions: TDAConditions stored False;

See Also
e TDAConditions

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

305

SQLite Data Access Components

59.1.5.23

5.9.1524

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Connection Property

Used to specify a connection object to use to connect to a data store.

Class
TCustomDADataSet

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a
data store.

Set at design-time by selecting from the list of provided TCustomDAConnection or its
descendant class objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection
property.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

DataTypeMap Property

Used to set data type mapping rules

Class

TCustomDADataSet

Syntax
property DataTypeMap: TDAMapRules stored IsMapRulesStored;

See Also
e TDAMapRules

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 306

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.5 Debug Property

Used to display the statement that is being executed and the values and types of its
parameters.

Class
TCustomDADataSet

Syntax
property Debug: boolean default False;

Remarks
Set the Debug property to True to display the statement that is being executed and the values

and types of its parameters.

You should add the LiteDacVcl unit to the uses clause of any unit in your project to make the
Debug property work.

Note: If TLiteSQLMonitor is used in the project and the TLiteSQLMonitor.Active property is set

to False, the debug window is not displayed.

See Also
e TCustomDASQL.Debug

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.6 DetailFields Property

Used to specify the fields that correspond to the foreign key fields from MasterFields when
building master/detail relationship.

Class
TCustomDADataSet

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

307

SQLite Data Access Components

5.9.15.27

Syntax

property DetailFields: string;

Remarks

Use the DetailFields property to specify the fields that correspond to the foreign key fields
from MasterFields when building master/detail relationship. DetailFields is a string containing
one or more field names in the detail table. Separate field names with semicolons.

Use Field Link Designer to set the value in design time.

See Also
e MasterFields

e MasterSource

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Disconnected Property

Used to keep dataset opened after connection is closed.

Class

TCustomDADataSet

Syntax

property Disconnected: boolean;

Remarks

Set the Disconnected property to True to keep dataset opened after connection is closed.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 308

5.9.15.28

5.9.1.5.2.9

FetchRow s Property

Used to define the number of rows to be transferred across the network at the same time.

Class
TCustomDADataSet

Syntax
property FetchRows: integer default 25;

Remarks

The number of rows that will be transferred across the network at the same time. This
property can have a great impact on performance. So it is preferable to choose the optimal
value of the FetchRows property for each SQL statement and software/hardware
configuration experimentally.

The default value is 25.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

FilterSQL Property

Used to change the WHERE clause of SELECT statement and reopen a query.

Class
TCustomDADatasSet

Syntax
property FiltersQL: string;

Remarks
The FilterSQL property is similar to the Filter property, but it changes the WHERE clause of
SELECT statement and reopens query. Syntax is the same to the WHERE clause.

Note: the FilterSQL property adds a value to the WHERE condition as is. If you expect this

value to be enclosed in brackets, you should bracket it explicitly.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

309

SQLite Data Access Components

Example
Queryl.FiltersQL := 'Dept >= 20 and DName LIKE ''M%''';

See Also
e AddWhere

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.10 FinalSQL Property

Used to return SQL text with all changes performed by AddWhere, SetOrderBy, and
FilterSQL, and with expanded macros.

Class

TCustomDADataSet

Syntax
property FinalsQL: string;

Remarks

Use FinalSQL to return SQL text with all changes performed by AddWhere, SetOrderBy, and
FilterSQL, and with expanded macros. This is the exact statement that will be passed on to
the database server.

See Also
e FinalSQL

e AddWhere

e SaveSQL

e SQLSaved
e RestoreSQL
e BaseSQL

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 310

5.9.1.5.2.11 IsQuery Property

Used to check whether SQL statement returns rows.

Class
TCustomDADataSet

Syntax
property IsQuery: boolean;

Remarks
After the TCustomDADataSet component is prepared, the IsQuery property returns True if
SQL statement is a SELECT query.

Use the IsQuery property to check whether the SQL statement returns rows or not.

IsQuery is a read-only property. Reading IsQuery on unprepared dataset raises an exception.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.12 KeyFields Property

Used to build SQL statements for the SQLDelete, SQLInsert, and SQLUpdate properties if
they were empty before updating the database.

Class
TCustomDADataSet

Syntax
property KeyFields: string;

Remarks

TCustomDADataset uses the KeyFields property to build SQL statements for the SQLDelete,
SQLlInsert, and SQLUpdate properties if they were empty before updating the database. For
this feature KeyFields may hold a list of semicolon-delimited field names. If KeyFields is not
defined before opening a dataset, TCustomDADataset requests information about primary
keys by sending an additional query to the database.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

31 SQLite Data Access Components

See Also
e SQLDelete

e SQLInsert
¢ SQLRefresh
e SQLUpdate

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.13 MacroCount Property

Used to get the number of macros associated with the Macros property.

Class

TCustomDADataSet

Syntax

property MacroCount: word;

Remarks

Use the MacroCount property to get the number of macros associated with the Macros
property.

See Also
e Macros

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.14 Macros Property

Makes it possible to change SQL queries easily.

Class
TCustomDADataSet

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 312

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL query text at design- or runtime. Marcos
extend abilities of parameters and allow to change conditions in a WHERE clause or sort
order in an ORDER BY clause. You just insert &MacroName in the SQL query text and
change value of macro in the Macro property editor at design time or call the MacroByName
function at run time. At the time of opening the query macro is replaced by its value.

Example

theQuery.SQL.Text := '"SELECT * FROM Dept ORDER BY &Order';
LiteQuery.MacroByName('Order').value:= 'DeptNo';
LiteQuery.Open;

See Also
e TMacro

e MacroByName

e Params

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.15 MasterFields Property

Used to specify the names of one or more fields that are used as foreign keys for dataset
when establishing detail/master relationship between it and the dataset specified in
MasterSource.

Class

TCustomDADataSet

Syntax
property MasterFields: string;

Remarks

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

313

SQLite Data Access Components

Use the MasterFields property after setting the MasterSource property to specify the names of
one or more fields that are used as foreign keys for this dataset when establishing detail/
master relationship between it and the dataset specified in MasterSource.

MasterFields is a string containing one or more field names in the master table. Separate field
names with semicolons.

Each time the current record in the master table changes, the new values in these fields are
used to select corresponding records in this table for display.

Use Field Link Designer to set the values at design time after setting the MasterSource
property.

See Also
e DetailFields
e MasterSource

¢ Master/Detail Relationships

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.5.2.16 MasterSource Property

Used to specify the data source component which binds current dataset to the master one.

Class
TCustomDADataSet

Syntax

property MasterSource: TDataSource;

Remarks

The MasterSource property specifies the data source component which binds current dataset
to the master one.

TCustomDADataset uses MasterSource to extract foreign key fields values from the master
dataset when building master/detail relationship between two datasets. MasterSource must
point to another dataset; it cannot point to this dataset component.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 314

When MasterSource is not nil dataset fills parameter values with corresponding field values

from the current record of the master dataset.

Note: Do not set the DataSource property when building master/detail relationships. Although

it points to the same object as the MasterSource property, it may lead to undesirable results.

See Also
e MasterFields

e DetailFields

¢ Master/Detail Relationships

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.17 Options Property

Used to specify the behaviour of TCustomDADataSet object.

Class
TCustomDADataSet

Syntax
property Options: TDADataSetOptions;

Remarks
Set the properties of Options to specify the behaviour of a TCustomDADataSet object.

Descriptions of all options are in the table below.

Option Name Description
AutoPrepare Used to exequte automatic Prepare on the
- query execution.
Used to enable caching of the
CacheCalcFields TField.Calculated and TField.Lookup
fields.
CompressBlobMode Used to store values of the BLOB fields in

compressed form.

Used to request default values/expressions

DefaultValues from the server and assign them to the

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

315

SQLite Data Access Components

DetailDelay

FieldsOrigin

FlatBuffers

InsertAllSetFields

LocalMasterDetail

LongStrings

MasterFieldsNullable

NumberRange

QueryRecCount

QuoteNames

RemoveOnRefresh

RequiredFields

ReturnParams

SetFieldsReadOnly

DefaultExpression property.

Used to get or set a delay in milliseconds
before refreshing detail dataset while
navigating master dataset.

Used for TCustomDADataSet to fill the
Origin property of the TField objects by
appropriate value when opening a dataset.
Used to control how a dataset treats data
of the ftString and ftVarBytes fields.

Used to include all set dataset fields in the
generated INSERT statement

Used for TCustomDADataSet to use local
filtering to establish master/detail
relationship for detail dataset and does not
refer to the server.

Used to represent string fields with the
length that is greater than 255 as
TStringField.

Allows to use NULL values in the fields by
which the relation is built, when generating
the query for the Detail tables (when this
option is enabled, the performance can get
worse).

Used to set the MaxValue and MinValue
properties of TintegerField and TFloatField
to appropriate values.

Used for TCustomDADataSet to perform
additional query to get the record count for
this SELECT, so the RecordCount property
reflects the actual number of records.

Used for TCustomDADataSet to quote all
database object names in autogenerated
SQL statements such as update SQL.
Used for a dataset to locally remove a
record that can not be found on the server.
Used for TCustomDADataSet to set the
Required property of the TField objects for
the NOT NULL fields.

Used to return the new value of fields to
dataset after insert or update.

Used for a dataset to set the ReadOnly
property to True for all fields that do not
belong to UpdatingTable or can not be
updated.

© 2024 Enter your company name

Reference 316

Used for TCustomDADataSet to raise an

StrictUpdate exception when the number of updated or
deleted records is not equal 1.
TrimFixedChar Specifies whether to discard all trailing

spaces in the string fields of a dataset.
Used to include all dataset fields in the

UpdateAllFields generated UPDATE and INSERT
statements.
Used to get or set a value that enables or
UpdateBatchSize disables batch processing support, and

specifies the number of commands that
can be executed in a batch.

See Also
¢ Master/Detail Relationships

e TMemDataSet.CachedUpdates

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.18 ParamCheck Property

Used to specify whether parameters for the Params property are generated automatically
after the SQL property was changed.

Class
TCustomDADataSet

Syntax
property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params property are
generated automatically after the SQL property was changed.

Set ParamCheck to True to let dataset automatically generate the Params property for the
dataset based on a SQL statement.

Setting ParamCheck to False can be used if the dataset component passes to a server the

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

317

SQLite Data Access Components

DDL statements that contain, for example, declarations of stored procedures which
themselves will accept parameterized values. The default value is True.

See Also
e Params

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.5.2.19 ParamCount Property

Used to indicate how many parameters are there in the Params property.

Class
TCustomDADataSet

Syntax
property ParamCount: word;

Remarks

Use the ParamCount property to determine how many parameters are there in the Params
property.

See Also
e Params

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.5.2.20 Params Property

Used to view and set parameter names, values, and data types dynamically.

Class
TCustomDADataSet

Syntax

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 318

property Params: TDAParams stored False;

Remarks

Contains the parameters for a query's SQL statement.

Access Params at runtime to view and set parameter names, values, and data types
dynamically (at design time use the Parameters editor to set the parameter information).
Params is a zero-based array of parameter records. Index specifies the array element to
access.

An easier way to set and retrieve parameter values when the name of each parameter is
known is to call ParamByName.

See Also
e ParamByName

e Macros

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.5.2.21 ReadOnly Property

Used to prevent users from updating, inserting, or deleting data in the dataset.

Class
TCustomDADataSet

Syntax
property Readonly: boolean default False;

Remarks

Use the ReadOnly property to prevent users from updating, inserting, or deleting data in the
dataset. By default, ReadOnly is False, meaning that users can potentially alter data stored in
the dataset.

To guarantee that users cannot modify or add data to a dataset, set ReadOnly to True.

When ReadOnly is True, the dataset's CanModify property is False.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

319 SQLite Data Access Components

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.22 RefreshOptions Property

Used to indicate when the editing record is refreshed.

Class
TCustomDADataSet

Syntax
property Refreshoptions: TRefreshoptions default [];

Remarks

Use the RefreshOptions property to determine when the editing record is refreshed.

Refresh is performed by the RefreshRecord method.

It queries the current record and replaces one in the dataset. Refresh record is useful when
the table has triggers or the table fields have default values. Use roBeforeEdit to get actual
data before editing.

The default value is [].

See Also
e RefreshRecord

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.23 Row sAffected Property

Used to indicate the number of rows which were inserted, updated, or deleted during the last
query operation.

Class
TCustomDADataSet

Syntax

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 320

property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or deleted during
the last query operation. If RowsAffected is -1, the query has not inserted, updated, or deleted
any rows.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.24 SQL Property

Used to provide a SQL statement that a query component executes when its Open method is
called.

Class

TCustomDADataSet

Syntax
property SQL: TStrings;

Remarks

Use the SQL property to provide a SQL statement that a query component executes when its
Open method is called. At the design time the SQL property can be edited by invoking the
String List editor in Object Inspector.

When SQL is changed, TCustomDADataSet calls Close and UnPrepare.

See Also
e SQLInsert

e SQLUpdate
e SQLDelete
e SQLRefresh

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

321 SQLite Data Access Components

5.9.1.5.2.25 SQLDelete Property

Used to specify a SQL statement that will be used when applying a deletion to a record.

Class
TCustomDADataSet

Syntax
property SQLDelete: TStrings;

Remarks

Use the SQLDelete property to specify the SQL statement that will be used when applying a
deletion to a record. Statements can be parameterized queries.

To create a SQLDelete statement at design-time, use the query statements editor.

Example
DELETE FROM Orders

WHERE
orderID = :01d_OrderID

See Also
e SQL

e SQLInsert
e SQLUpdate
e SQLRefresh

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.26 SQLlInsert Property

Used to specify the SQL statement that will be used when applying an insertion to a dataset.

Class

TCustomDADataSet

Syntax

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 322

property SQLInsert: TStrings;

Remarks

Use the SQLInsert property to specify the SQL statement that will be used when applying an
insertion to a dataset. Statements can be parameterized queries. Names of the parameters
should be the same as field names. Parameters prefixed with OLD__ allow using current
values of fields prior to the actual operation.

Use ReturnParam to return OUT parameters back to dataset.

To create a SQLInsert statement at design-time, use the query statements editor.

See Also
e SQL

e SQLUpdate
e SQLDelete
e SQLRefresh

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.5.2.27 SQLLock Property

Used to specify a SQL statement that will be used to perform a record lock.

Class
TCustomDADataSet

Syntax
property sqQLLock: TStrings;

Remarks

Use the SQLLock property to specify a SQL statement that will be used to perform a record
lock. Statements can be parameterized queries. Names of the parameters should be the
same as field names. The parameters prefixed with OLD _ allow to use current values of
fields prior to the actual operation.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

323

SQLite Data Access Components

To create a SQLLock statement at design-time, the use query statement editor.

See Also
e SQL

e SQLInsert
e SQLUpdate
e SQLDelete
e SQLRefresh

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.28 SQLRecCount Property

Used to specify the SQL statement that is used to get the record count when opening a
dataset.

Class
TCustomDADataSet

Syntax
property SQLRecCount: TStrings;

Remarks

Use the SQLRecCount property to specify the SQL statement that is used to get the record
count when opening a dataset. The SQL statement is used if the
TDADataSetOptions.QueryRecCount property is True, and the TCustomDADataSet.FetchAll
property is False. Is not used if the FetchAll property is True.

To create a SQLRecCount statement at design-time, use the query statements editor.

See Also
e SQLlInsert

e SQLUpdate
e SQLDelete

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 324

e SQLRefresh
e TDADataSetOptions

e FetchingAll

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.2.29 SQLRefresh Property

Used to specify a SQL statement that will be used to refresh current record by calling the
RefreshRecord procedure.

Class
TCustomDADataSet

Syntax
property SQLRefresh: TStrings;

Remarks

Use the SQLRefresh property to specify a SQL statement that will be used to refresh current
record by calling the RefreshRecord procedure.

Different behavior is observed when the SQLRefresh property is assigned with a single
WHERE clause that holds frequently altered search condition. In this case the WHERE
clause from SQLRefresh is combined with the same clause of the SELECT statement in a
SQL property and this final query is then sent to the database server.

To create a SQLRefresh statement at design-time, use the query statements editor.

Example

SELECT Shipname FROM Orders
WHERE
OorderID = :0rderiID

See Also
e RefreshRecord

e SQL

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

325

SQLite Data Access Components

e SQLInsert
e SQLUpdate
e SQLDelete

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.5.2.30 SQLUpdate Property

Used to specify a SQL statement that will be used when applying an update to a dataset.

Class
TCustomDADataSet

Syntax
property SQLUpdate: TStrings;

Remarks

Use the SQLUpdate property to specify a SQL statement that will be used when applying an
update to a dataset. Statements can be parameterized queries. Names of the parameters
should be the same as field names. The parameters prefixed with OLD _ allow to use current
values of fields prior to the actual operation.

Use ReturnParam to return OUT parameters back to the dataset.

To create a SQLUpdate statement at design-time, use the query statement editor.

Example

UPDATE Orders
set
ShipName = :ShipName
WHERE
orderID = :01d_OrderID

See Also
e SQL
e SQLlInsert

e SQLDelete

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 326

e SQLRefresh

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.5.2.31 UniDirectional Property

Used if an application does not need bidirectional access to records in the result set.

Class
TCustomDADataSet

Syntax

property UniDirectional: boolean default False;

Remarks

Traditionally SQL cursors are unidirectional. They can travel only forward through a dataset.
TCustomDADataset, however, permits bidirectional travelling by caching records. If an
application does not need bidirectional access to the records in the result set, set
UniDirectional to True. When UniDirectional is True, an application requires less memory and
performance is improved. However, UniDirectional datasets cannot be modified. In
FetchAll=False mode data is fetched on demand. When UniDirectional is set to True, data is
fetched on demand as well, but obtained rows are not cached except for the current row. In
case if the Unidirectional property is True, the FetchAll property will be automatically set to
False. And if the FetchAll property is True, the Unidirectional property will be automatically set
to False. The default value of UniDirectional is False, enabling forward and backward
navigation.

Note: Pay attention to the specificity of using the FetchAll property=False

See Also
e TLiteQuery.FetchAll

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

327

SQLite Data Access Components

5.9.1.5.3 Methods

Methods of the TCustomDADataSet class.

For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet

Members topic.

Public

Name

AddWhere

ApplyRange (inherited from TMemDataSet)

ApplyUpdates (inherited from TMemDataSet)

BreakExec

CancelRange (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)

CreateBlobStream

DeferredPost (inherited from TMemDataSet)

DeleteWhere

EditRangeEnd (inherited from TMemDataSet)

Description

Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

Applies a range to the
dataset.

Overloaded. Writes
dataset's pending cached
updates to a database.
Breaks execution of the SQL
statement on the server.
Removes any ranges
currently in effect for a
dataset.

Clears all pending cached
updates from cache and
restores dataset in its prior
state.

Clears the cached updates
buffer.

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

Makes permanent changes
to the database server.
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

Enables changing the
ending value for an existing
range.

© 2024 Enter your company name

Reference 328

EditRangeStart (inherited from TMemDataSet)

Execute

Executing

Fetched

Fetching

FetchingAll

FindKey

FindMacro

FindNearest

FindParam

GetBlob (inherited from TMemDataSet)

GetDataType

GetFieldObject

GetFieldPrecision

Enables changing the
starting value for an existing
range.

Overloaded. Executes a
SQL statement on the
server.

Indicates whether SQL
statement is still being
executed.

Used to find out whether
TCustomDADataSet has
fetched all rows.

Used to learn whether
TCustomDADataSet is still
fetching rows.

Used to learn whether
TCustomDADataSet is
fetching all rows to the end.
Searches for a record which
contains specified field
values.

Finds a macro with the
specified name.

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.
Determines if a parameter
with the specified name
exists in a dataset.
Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

Returns internal field types
defined in the MemData and
accompanying modules.
Returns a multireference
shared object from field.
Retrieves the precision of a
number field.

© 2024 Enter your company name

329

SQLite Data Access Components

GetFieldScale

GetKeyFieldNames

GetOrderBy

GotoCurrent

Locate (inherited from TMemDataSet)

LocateEXx (inherited from TMemDataSet)

Lock

MacroByName

ParamByName

Prepare

RefreshRecord

RestoreSQL

RestoreUpdates (inherited from TMemDataSet)

RevertRecord (inherited from TMemDataSet)

SaveSQL

Retrieves the scale of a
number field.

Provides a list of available
key field names.

Retrieves an ORDER BY
clause from a SQL
statement.

Sets the current record in
this dataset similar to the
current record in another
dataset.

Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Locks the current record.

Finds a macro with the
specified name.

Sets or uses parameter
information for a specific
parameter based onits
name.

Allocates, opens, and
parses cursor for a query.
Actualizes field values for
the current record.
Restores the SQL property
modified by AddWhere and
SetOrderBy.

Marks all records in the
cache of updates as
unapplied.

Cancels changes made to
the current record when
cached updates are
enabled.

Saves the SQL property
value to BaseSQL.

© 2024 Enter your company name

Reference 330

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy Builds an ORDER BY clause
- of a SELECT statement.
Sets the starting and ending
values of a range, and
applies it.

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

Determines if the SQL

SaveToXML (inherited from TMemDataSet)

SetRange (inherited from TMemDataSet)

SetRangeEnd (inherited from TMemDataSet)

SetRangeStart (inherited from TMemDataSet)

SQlLSaved property value was saved to
the BaseSQL property.
UnLock Releases a record lock.

Frees the resources
UnPrepare (inherited from TMemDataSet) allocated for a previously
prepared query on the
server and client sides.
Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are

UpdateResult (inherited from TMemDataSet)

enabled.
Indicates the current update
UpdateStatus (inherited from TMemDataSet) status for the dataset when
cached updates are
enabled.
See Also
e TCustomDADataSet Class
e TCustomDADataSet Class Members
© 1997-2024 Request Support DAC Forum Provide Feedback

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

331

SQLite Data Access Components

5.9.1.5.3.1

5.9.1.5.3.2

Devart. All Rights
Reserved.

AddWhere Method

Adds condition to the WHERE clause of SELECT statement in the SQL property.

Class

TCustomDADataSet

Syntax
procedure Addwhere(const Condition: string);

Parameters

Condlition
Holds the condition that will be added to the WHERE clause.

Remarks

Call the AddWhere method to add a condition to the WHERE clause of SELECT statement in
the SQL property.

If SELECT has no WHERE clause, AddWhere creates it.

Note: the AddWhere method is implicitly called by RefreshRecord. The AddWhere method
works for the SELECT statements only.

Note: the AddWhere method adds a value to the WHERE condition as is. If you expect this

value to be enclosed in brackets, you should bracket it explicitly.

See Also
e DeleteWhere

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

BreakExec Method

Breaks execution of the SQL statement on the server.

Class

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 332

TCustomDADataSet

Syntax

procedure BreakExec; virtual;

Remarks

Call the BreakExec method to break execution of the SQL statement on the server. It makes
sense to only call BreakExec from another thread.

See Also
e TCustomDADataSet.Execute

e TCustomDASQL.BreakExec

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.3.3 CreateBlobStream Method

Used to obtain a stream for reading data from or writing data to a BLOB field, specified by the
Field parameter.

Class

TCustomDADataSet

Syntax

function CreateBlobStream(Field: TField; Mode: TBlobStreamMode):
TStream; override;

Parameters
Field
Holds the BLOB field for reading data from or writing data to from a stream.

Mode
Holds the stream mode, for which the stream will be used.

Return Value
The BLOB Stream.

Remarks

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

333 SQLite Data Access Components

Call the CreateBlobStream method to obtain a stream for reading data from or writing data to
a BLOB field, specified by the Field parameter. It must be a TBlobField component. You can
specify whether the stream will be used for reading, writing, or updating the contents of the
field with the Mode parameter.

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.3.4 DeleteWhere Method

Removes WHERE clause from the SQL property and assigns the BaseSQL property.

Class
TCustomDADataSet

Syntax

procedure Deletewhere;

Remarks

Call the DeleteWhere method to remove WHERE clause from the the SQL property and
assign BaseSQL.

See Also
e AddWhere

e BaseSQL

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.3.5 Execute Method

Executes a SQL statement on the server.

Class

TCustomDADataSet

Overload List

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 334

Name Description

Execute Executes a SQL statement on the server.
Execute(lters: integer; Offset: integer) Used to perform Batch operations .

© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Executes a SQL statement on the server.

Class
TCustomDADataSet

Syntax

procedure Execute; overload; virtual;

Remarks

Call the Execute method to execute an SQL statement on the server. If SQL statement is a
SELECT query, Execute calls the Open method.

Execute implicitly prepares SQL statement by calling the TCustomDADataSet.Prepare

method if the TCustomDADataSet.Options option is set to True and the statement has not

been prepared yet. To speed up the performance in case of multiple Execute calls, an
application should call Prepare before calling the Execute method for the first time.

See Also
e TCustomDADataSet.AfterExecute

e TCustomDADataSet.Executing

e TCustomDADataSet.Prepare

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Used to perform Batch operations .

Class
TCustomDADataSet

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

335 SQLite Data Access Components

Syntax

procedure Execute(Iters: integer; Offset: integer = 0); overload;
virtual;

Parameters

Iters
Specifies the number of inserted rows.

Offset
Points the array element, which the Batch operation starts from. 0 by default.

Remarks

The Execute method executes the specified batch SQL query. See the Batch operations
article for samples.

See Also
e Batch operations

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.3.6 Executing Method

Indicates whether SQL statement is still being executed.

Class
TCustomDADataSet

Syntax
function Executing: boolean;

Return Value
True, if SQL statement is still being executed.

Remarks

Check Executing to learn whether TCustomDADataSet is still executing SQL statement.

© 1997-2024
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 336

5.9.1.5.3.7 Fetched Method

Used to find out whether TCustomDADataSet has fetched all rows.

Class
TCustomDADataSet

Syntax
function Fetched: boolean; virtual;

Return Value
True, if all rows have been fetched.

Remarks
Call the Fetched method to find out whether TCustomDADataSet has fetched all rows.

See Also
¢ Fetching
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.3.8 Fetching Method

Used to learn whether TCustomDADataSet is still fetching rows.

Class

TCustomDADataSet

Syntax

function Fetching: boolean;

Return Value
True, if TCustomDADataSet is still fetching rows.

Remarks

Check Fetching to learn whether TCustomDADataSet is still fetching rows. Use the Fetching
method if NonBlocking is True.

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

337 SQLite Data Access Components

See Also
e Executing
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.3.9 FetchingAll Method

Used to learn whether TCustomDADataSet is fetching all rows to the end.

Class
TCustomDADataSet

Syntax

function FetchingAll: boolean;

Return Value
True, if TCustomDADataSet is fetching all rows to the end.
Remarks
Check FetchingAll to learn whether TCustomDADataSet is fetching all rows to the end.

See Also
e Executing
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.3.10 FindKey Method

Searches for a record which contains specified field values.

Class

TCustomDADataSet

Syntax

function Findkey(const Keyvalues: array of System.TvarRec):
Boolean;

© 2024 Enter your company name

https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=litedac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/litedac/feedback.html

Reference 338

Parameters

KeyValues
Holds a key.

Remarks

Call the FindKey method to search for a specific record in a dataset. KeyValues holds a
comma-delimited array of field values, that is called a key.

This function is provided for BDE compatibility only. It is recommended to use functions
TMemDataSet.Locate and TMemDataSet.LocateEx for the record search.
© 1997-2024

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.5.3.11 FindMacro Method

Finds a macro with the specified name.

Class

TCustomDADataSet

Syntax

function Findvacro(const value: string): TMacro;

Parameters

Value
Holds t